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A linearly distributed lag estimator withr-convex coefficients

E. E. Vassiliou1, I. C. Demetriou∗,1

Abstract

The purpose of linearly distributed-lag models is to estimate, from time series data, values of the dependent variable
by incorporating prior information of the independent variable. A least squares calculation is proposed for estimating
the lag coefficients subject to the condition that therth differences of the coefficients are nonnegative, wherer is a
prescribed positive integer. Such priors do not assume any parameterization of the coefficients, and in several cases
provide such an accurate representation of the prior knowledge, so as to compare favorably to established methods.
In particular, the choice of the prior knowledge parameterr gives the lag coefficients interesting special features such
as monotonicity, convexity, convexity/concavity, etc. The proposed estimation problem is a strictly convex quadratic
programming calculation, where each of the constraint functions depends onr + 1 adjacent lag coefficients multiplied
by the binomial numbers with alternating signs that arise in the expansion of therth power of (1− 1). The most
distinctive feature of this calculation is the Toeplitz structure of the constraint coefficient matrix, which allows the
development of a special active set method that is faster than general quadratic programming algorithms. Most of
this efficiency is due to reducing the equality-constrained minimization calculations, which occur during the quadratic
programming iterations, to unconstrained minimization ones that depend on much fewer variables. Some examples
with real and simulated data are presented in order to illustrate this approach.

Key words: Almon polynomial, approximation, consumption, difference, distributed-lag model, least squares,
r-convexity, regression, quadratic programming, time series, Toeplitz matrix

1. Introduction

The purpose of distributed-lag models is to estimate, from time series data, valuesy that incorporate prior infor-
mation of the independent variablex. Specifically, the data are the pairs (xt, yt), t = 1,2, . . . , n + m− 1, where we
assume thatyt depends not only onxt, but also onm− 1 past values ofxt, wherem is a prescribed positive num-
ber. In econometric and engineering applications (see, for instance, [10], [12], [18], [25], [26], [33], [44]) a linearly
distributed-lag model of lengthm is defined as

yt =

m∑

i=1

βi xt−i+1 + εt, t ≥ m, (1)

whereβ1, β2, . . . , βm are the unknown lag coefficients andεt is a random variable with zero mean and constant variance.
For example, one may wish to model consumption expenditures (i.e.yt) with respect to changes of income (i.e.xt)
over time. Another example from political science is to model reciprocity and enduring rivalries over some periods.

Distributed-lag modeling refers to only the lastn observations ofyt, t = 1,2, . . . ,m− 1,m, . . . ,m+ n− 1, because
m − 1 degrees of freedom are lost due to (1). Further, the issue of them selection depends on the data and may
be decided with statistical means (see, for example, [28]:p.119). Adopting matrix notation, the unconstrained lag-
distribution problem is to determine a vectorβT = (β1, β2, . . . , βm) that minimizes the objective function

F(β) = (y− Xβ)T(y− Xβ), (2)
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whereyT = (ym, ym+1, . . . , ym+n−1) andX is then×mmatrix of current and lagged values ofxt defined as

X =



xm xm−1 xm−2 · · · x1

xm+1 xm xm−1 · · · x2

xm+2 xm+1 xm · · · x3
...

...
...

. . .
...

xm+n−1 xm+n−2 xm+n−3 · · · xn


.

In the development of suitable algorithms for unconstrained least squares estimation ofβ, one important considera-
tion is that often there is high multicollinearity among thext’s giving a notorious ill-posed inverse problem (for general
references see, for example, [20], [43], [45]). Moreover, in the usual case of presence of errors of measurement in the
yt’s, the resulted unconstrained estimates are corrupted by distortions. Often, however, there is a discernible trend in
these estimates (which should depend on the choice ofm) that may be helpful in considering some smoothness priors
(see example in Section 4).

There have been several suggestions in the econometric literature to put some structure on theβi ’s in (1). They
all impose some a priori structure on the form of the lag, in order to combine prior and sample information in the
estimation of the regression coefficients. A very popular approach is the Almon model [1], which assumes that the
lag coefficients lie on a polynomial of degreer − 1, wherer is a prescribed integer. Shiller’s method [41], as a variant
of this model, assumes that the lag coefficients lie close to, rather than on, a polynomial. Jorgenson’s method [24]
approximates the lag distribution by the ratio of two polynomials. More models are found in [9], [21], [22], [29], [31],
[33], [36], [42], etc, while some of them are implemented in software packages (see, for instance, [40]). All these
models assume that the underlying function of the lag coefficients can be approximated closely by a form that depends
on only a few parameters. However, over the years, literature on the subject agrees that some weak representation of
the lag coefficients is a sensible requirement for a satisfactory model estimation (see, for example, [15], [19], [21],
[33] and references therein).

In this paper a method is suggested that seeks lag coefficientsβ1, β2, . . . , βm such that therth differences (see, for
example, [23])

∆r
jβ =

1
r!

j+r∑

i= j

(−1)r−i+ j

(
r

i − j

)
βi , j = 1,2, . . . ,m− r (3)

are nonnegative, wherer is much smaller thanm. Specifically the method minimizes (2) subject to the conditions

∆r
jβ ≥ 0, j = 1,2, . . . ,m− r, (4)

but it may well be applied for the case where the differences∆r
jβ, j = 1,2, . . . ,m− r are non-positive. Ideally, the

fitted function of the lag coefficients is to have a nonnegativerth derivative. Functions like this are calledr-convex
(see [27] for their fundamental role in total positivity) and we analogously callr-convex a vector whose components
satisfy the constraints (4).

If (4) are exactly satisfied, then our model is identical to Almon’s polynomial of degreer−1. However, our model,
due to ther-convexity properties ofβ, allows some constraints to be amply satisfied, which is equivalent to relaxing
some differences in Almon’s polynomial. Hence our approximation is less tight than that of Almon’s, providing a
weaker structure on the lag coefficients. In order to answer the question on the nature of ther-convex vectorβ, we
consider these indices of the estimated components ofβ, such that∆r

jβ , 0, and seek the intervals on which the
components ofβ satisfy the equations∆r

jβ = 0. Letσ andτ be any indices such that 1≤ σ < τ ≤ m. If ∆r
jβ = 0, for

j = σ,σ + 1, . . . , τ −m, if σ = 1 or ∆r
σ−1β , 0 and ifτ = m or ∆r

τ−r+1β , 0, thenβσ, βσ+1, . . . , βτ are interpolated by
a polynomial of degree at mostr − 1. Then the estimated values{βi : i = 1,2, . . . ,m} lie on a piecewise polynomial
approximation, where the polynomial pieces are of degree at mostr −1. The polynomial pieces usually overlap, while
their breaks are found automatically by the optimization calculation. This not only makes our technique more flexible
than the Almon polynomial, but also provides certain advantages over the spline distributed-lag method of [3], where
the breakpoints have to be specified in advance.

The approach presented here may be generally applied to a variety of situations in which one knows some proper-
ties of an underlying relation, but one does not have sufficient information to put the relation into any simple parametric
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Figure 1: MatrixDr , whenm = 14 andr = 4

form. Two immediate advantages are gained by this approach to lag estimation. The first one is that it avoids the as-
sumption that the relation has a form that depends of a few parameters, which occurs in many other techniques as
already being mentioned. The second one is that it obtains properties (i.e.r-convexity, see [4]) that occur in a vari-
ety of underlying relations of the lag coefficients, which depend on the value ofr, such as monotonicity, convexity,
concavity, convexity/concavity (see [6], [8], [39]) etc. For the particular caser = 1 we obtain the monotonically
increasing components

β1 ≤ β2 ≤ · · · ≤ βm, (5)

which are useful ifxt in (1) becomes less significant as time proceeds. In many real cases, as in production situations,
the caser = 2 in (4) may be considered. Now the lag-coefficients are subject to the increasing returnsβ2 − β1 ≤
β3 − β2 ≤ · · · ≤ βm − βm−1, which is equivalent in assuming that{βi : i = 1,2, . . . ,m} satisfy the convexity conditions
(i.e. they lie on a convex curve)

βi+2 − 2βi+1 + βi ≥ 0, i = 1,2, . . . ,m− 2. (6)

Respectively, the concavity conditions (cf. decreasing returns) are

βi+2 − 2βi+1 + βi ≤ 0, i = 1,2, . . . ,m− 2. (7)

Further, when the lag-coefficients follow a sigmoid trend or the underlying relation shows an inflection point and away
from this the underlying relation seems to be convex and concave, then it would be suitable to allowr = 3 in (4),
which gives the conditions

βi+3 − 3βi+2 + 3βi+1 − βi ≥ 0, i = 1,2, . . . ,m− 3. (8)

With these templates at hand we express the constraints (4) in the matrix form

DT
r β ≥ 0, (9)

whereDr is them× (m− r) rectangular matrix, whose elements (Dr )i j are defined by the relation

(Dr )i j =


(−1)r+ j−i

(
r

i − j

)
, j ≤ i ≤ j + r, j = 1,2, . . . ,m− r

0, otherwise.
(10)

Now the nonzero components of thejth column ofDr are a constant multiple of the terms that occur in the differences
(3) giving a Toeplitz pattern that depends on the value ofr. For instance, we letm = 14 and displayDr in Figs. 1 and
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Figure 2: MatrixDr , whenm = 14 andr = 5

2, for r = 4 and 5 respectively. General references to Toeplitz matrices may be found, for example, in [2], [17] and
[34].

Since the constraints onβ are linear and consistent and since the second derivative matrix of (2) with respect toβ

is twice the matrixXTX, the problem of minimizing (2) subject to (9) is a convex quadratic programming problem.
Given thatXTX is positive semidefinite, there is a global solution and ifXTX is positive definite the solution is
unique,β̂ say. Of course, it is easy to construct a vectorx such that some row of matrixX is a multiple of another

row, but dependencies are readily detected in the algorithms. In this paper, it is assumed thatXTX is positive definite.
Therefore it is usually straightforward to calculateβ̂ by standard quadratic programming methods (see, for example,
[11], [13] and [30]), but careful attention is given to solving this problem efficiently by taking account of the Toeplitz
structure of the constraint gradients for the various values ofr.

Our model, as defined by (1) and the minimization of (2) subject to (9), is an instance of the general inequality
constrained least-squares regression model of [32] that uses prior and sample information for parameter estimation.
Sampling and statistical properties as well as some important questions of the general problem that reflect on our
special problem are considered by [10] and [32], but they are beyond the scope of our paper.

In Section 2 we present and consider the method that is used. The method employs a quadratic programming
algorithm, which is variant of the algorithms of [8] and [16]. The main feature of this method is a suitable transforma-
tion in the linear space of variables, which is used to convert the equality-constrained subproblems that arise during
the quadratic programming iterations into unconstrained ones. Further, the calculation of the Lagrange multipliers
becomes very efficient by making use of some methods that have been developed independently by [7]. The latter two
calculations take advantage of a common submatrix that occurs during each iteration of the quadratic programming
algorithm. Further, we compare the efficiency of our method with those in [16] and [14]. In Section 3 we present
results from a simulation that demonstrate the performance of our method. In Section 4 we report results of our
method on real data and compare with the method of Almon. In Section 5 we present some concluding remarks. A
Fortran version of our method has been written by one of the authors (EEV). It consists of about 1300 lines including
comments.

2. The method of calculation of the lag coefficients

This section develops a method for solving the problem of Section 1 that depends on the Karush-Kuhn-Tucker
optimality conditions (see, for example, [35]). They state thatβ = β̂ if and only if the constraints (9) are satisfied and
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there exist Lagrange multipliersλi ≥ 0, i ∈ A such that the equation

2XT(Xβ − y) =
∑

i∈A
λiai , (11)

holds, whereA is the subset{i : ∆r
i β = 0} of constraint indices andai ∈ Rm is the gradient of∆r

i β by a constant with
respect toβ. We define,λi = 0, for i ∈ [1,m− r]\A and denote the (m− r)-vector of Lagrange multipliers byλ.

The method employs an extension of the strictly convex quadratic programming calculation of [8], which is
based on the primal-dual active set method of [16]. It generates a sequence of subsets of the constraint indices
{1,2, . . . ,m− r}, where for each subset,A say, the equations (or active constraints)

aT
i β = 0, i ∈ A (12)

are satisfied and the vectorβ is obtained by minimizing the objective function (2) subject to the equations (12).
Moreover, unique Lagrange multipliersλi , i ∈ A are defined by the first order optimality condition (11).

The efficiency of these operations depends on the remark that the minimization of function (2) subject to some
prescribed differences being zero is reduced to an unconstrained minimization problem with fewer variables. The cal-
culation begins fromA = {1,2, . . . ,m− r}. Then it proceeds by dropping constraint indices fromA that correspond
to negative Lagrange multipliers, one at a time, until all multipliers become nonnegative. This provides the starting
point for the quadratic programming procedure. Quadratic programming generates a finite number of sets of indices
of different active constraints, so that at the beginning of an iteration the Lagrange multipliers are all nonnegative.
If the associated estimate ofβ violates some constraints then the most violated constraint index is added toA, and
other constraint indices are removed fromA if necessary, so that the Lagrange multipliers become nonnegative again,
which completes an iteration. Termination occurs when the Karush-Kuhn-Tucker conditions are satisfied.

Algorithm 1 (Quadratic programming for the lag coefficientsβi , i = 1,2, . . . ,m)
Input: n, m, r and (xt, yt), t = 1,2, . . . ,m+ n− 1
Output: solutionβ̂ and the associated Lagrange multipliers

Step 0 (Initialization) SetA = {1,2, . . . ,m− r} and call Algorithm 2 (which is described later) to calculateβ and
λ. If any negative multipliers occur, then start removing the corresponding constraint indices fromA, one at a
time, while recalculating each timeβ andλ, until the multipliers become nonnegative.

Step 1 (Testing the constraints) If the constraints (9) are satisfied, then terminate. Otherwise recordµ = λ, find the

most violated constraint,aT
k β < 0 say, addk toA and calculateβ andλ (by Algorithm 2).

Step 2 (Testing the sign of the Lagrange multipliers) Ifλi ≥ 0, i ∈ A, then branch to Step 1, otherwise proceed to
Step 3.

Step 3 (Recovering nonnegativity of the Lagrange multipliers) Seek the greatest value ofθ such that the numbers
(1−θ)µi +θλi , i ∈ A are nonnegative, which implies 0≤ θ < 1. If ρ is the value ofi that gives (1−θ)µi +θλi = 0,
then removeρ fromA, replaceµ by (1−θ)µ+θλ, calculateβ andλ (by Algorithm 2) and branch to Step 2. ¥

Because the number of constraints is finite, Algorithm 1 either terminates or cycles. The following propositions
prevent cycling in absence of rounding errors. Step 0 provides the starting point. Step 1 is entered either from Step
0 or from Step 2. Inserting constraints at Step 1 makes the value of the objective function strictly higher than the
value it had at the previous occurrence of Step 1. Step 2 is entered from Step 1 or Step 3 and checks the sign of the
Lagrange multipliers. Step 3 is entered from Step 2 in order to recover nonnegativity of the Lagrange multipliers.
Now bothµ andλ are available, the components ofµ are nonnegative and one or more of the components ofλ are
negative. The first visit to Step 3 picks an indexρ that is different fromk of Step 1. Thisρ cannot be inA on the next
visit to Step 1. Deleting constraints at Step 3 decreases the value of the objective function, but keeps it strictly larger
than the value it had at the previous instance of Step 2. Hence at least one of the deleted constraint indices cannot
be inserted until after the algorithm branches to Step 2. Since Step 2 is usually reached after some insertions and the
objective function strictly increases at consecutive instances of Step 2, cycling is impossible in exact arithmetic, so
the algorithm terminates. These propositions are proved in [8].
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Lemma 1. Algorithm 1 terminates at the solution of the problem that minimizes the objective function (2) subject to
the constraints (9).

Proof: See Theorem 2 of [8]. ¥

An important feature of any active set method concerns efficient solution of the equality constrained minimization
problems that occur when changes are made toA. Below in this section we take advantage of the Toeplitz structure
of matrix Dr and address two topics. First, we construct a basis for the linear subspace defined by (12). Second, we
present efficient methods for the minimization of function (2) subject to the linear constraints (12) and the calculation
of the corresponding Lagrange multipliers from (11).

Since there are no redundant equations in (12), as it may be proved by taking account of the fact that eachai
depends on onlyr + 1 adjacent components, there arem− p degrees of freedom in the variablesβ1, β2, . . . , βm, where
p = |A| is the number of elements ofA. It follows that we can findm− p linearly independentm-vectors{us : s ∈ S},
for someS ⊆ {1,2, . . . ,m} to be defined later, such thata j

Tus = 0, s ∈ S, for all j ∈ A. Now for any vectorβ that
satisfies (12) there existm− p real numbers{θi : i = 1,2, . . . ,m− p} such that

β =

m−p∑

i=1

θiuσ(i), (13)

where we letσ(1), σ(2), . . . , σ(m− p) be the elements ofS in ascending order.
BecauseA is usually kept large during the iterations of Algorithm 1, working with them− p variables{θi : i =

1,2, . . . ,m− p} instead of with{βi : i = 1,2, . . . ,m} is advantageous in that there are fewer variables and that the
equations (12) are satisfied automatically. Suppose that a basis{us : s ∈ S} is known and letU be them× (m− p)
matrix whose columns are the basis elementsus. Then we substitute (13) into (2) and we obtain the reduced quadratic
function

ψ(θ) = ‖XUθ − y‖22, (14)

whereθT = (θ1, θ2, . . . , θm−p). Since the second derivative matrix with respect toθ of function (14) is the (m− p) ×
(m− p) positive definite matrix (XU)T(XU), a unique minimizer ofψ(θ) exists and is obtained by applying Cholesky
factorization to the first order condition of (14), namely the normal equations

(XU)T(XU)θ = (XU)Ty. (15)

As p in practice is close tom− r, θ is obtained by solving ar × r (about) system, wherer is a small number. Thus, this
procedure provides a stable and economical calculation for obtainingθ. Thenβ is derived by substitutingθ into (13).

The question is whether we can find a suitable basis for the linear subspace of vectorsβ defined by the active
constraints (12) or equivalently by the equations∆r

i β = 0, i ∈ A. Motivated by [4], we develop a basis, which is a
convenient and very efficient choice for our problem, because it is naturally defined from the non-active constraints
throughout the calculation and because the matrices that appear are banded and positive definite. The rest of the section
includes technical details for defining and calculating this basis as well as for calculating the Lagrange multipliers.

Having in mind the paragraph that follows relation (4), we associate a break in the mentioned piecewise polyno-
mial approximation with the central coefficient (there are two such coefficients with opposite sign, ifr is odd) of a non-
active difference. Thus, letK = {1,2, . . . ,m− r}\A be the set of indices of constraints that giveaT

j β , 0,1 ≤ j ≤ m− r,
let q̄ be the least integer such that 2¯q > r and letq = q̄− 1. Then the indices of the central coefficients of non-active
differences are

{k + q : k ∈ K}
and they are are going to be associated with|K| = m− r − p basis elements. The additionalr basis elements derive
from those additionalq indices at the left end andr − q indices at the right end of the interval [1+ q,m− r + q], as
they are specified by the the index set

Q = {1, . . . , q} ∪ {m− r + q + 1, . . . ,m} .
We also let

S = {k + q : k ∈ K} ∪ Q.
6
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Figure 3: MatrixM r associated withDr , whenm = 14, r = 4 andA = {1,3,4,5,8,9}. Dr is displayed in Fig. 1

.

Then we define the vectorsus, for s ∈ S as a solution to the equations

(us)t = δst, for s, t ∈ S (16)

and
aT

i us = 0, if i ∈ A ands ∈ S, (17)

whereδst is the Kronecker’s delta, and we prove that they form a basis.

Lemma 2. The vectorsus, for s ∈ S, which are defined by (16) and (17), form a basis for them− p dimensional
subspace of the vectorsβ that satisfy the equality constraints (12).

Proof: Let ηs, s ∈ S be scalars such that ∑

s∈S
ηsus = 0. (18)

Considering the componentst, t ∈ S of equation (18), in view of the definition (16), gives immediatelyηs =

0, for all s ∈ S. Hence, the vectorsus, s ∈ S are linearly independent. Because of (17), these vectors belong to the
subspace that satisfies the active constraints (12). Since{k + q : k ∈ K}∩Q = ∅, the vectorsus, s ∈ S are all different.
Moreover,|K| = m− r − p and |S| = |K| + |Q| = (m− r − p) + r = m− p, so the dimension of the subspace under
consideration ism− p. ¥

We remind that{i + q : i ∈ A} ∩ {k + q : k ∈ K} = ∅, namely thatA andK have no common elements and we
turn to the calculation of the basis elements. Since them− p components{(us)t, t ∈ S} of us are defined by (16) and
since{i + q : i ∈ A} ∪ S = {1,2, . . . ,m}, the remainingp components are{(us)i+q, i ∈ A}. These components are
obtained by solving ap× p system of equations, whose coefficient matrix elements are derived by deleting a column
of the p × m coefficient matrix of (17) for eachs ∈ S (we shall see later that the transpose of this reduced matrix
occurs also in the calculation of the Lagrange multipliers) and whose right hand side is own to (16). Specifically, we
let α(1), α(2), . . . , α(p) be the elements ofA in ascending order and obtain the reducedp× p matrix D̃r by

(D̃r )cd = (Dr )α(c)+q,α(d), 1 ≤ c,d ≤ p. (19)

Hence and in view of (17) and (16), the components{(us)i+q, i ∈ A} for a specifics ∈ S can be found by solving the
system

p∑

d=1

(D̃T
r )cd(us)α(d)+q = (bs)c, 1 ≤ c,d ≤ p, (20)

where vectorbs, s ∈ S, due to (16), is the negative of thesth column of the coefficient matrix of system (17).
Motivated by the sign pattern ofDr (as, for instance, it is exhibited by Figs. 1 and 2), we claim thatD̃r is positive

definite if r mod 4= 0,3 and negative definite ifr mod 4= 1,2. In order to prove this claim we set

(M r )cd =

{
(D̃r )α(c)+q,α(d), if r mod 4= 0,3
−(D̃r )α(c)+q,α(d), if r mod 4= 1,2

1 ≤ c,d ≤ p, (21)
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Figure 4: As in Fig. 3, butr = 5. Dr is displayed in Fig. 2

.

while, by way of illustration, in Figs. 3 and 4 we seeM r whenm = 14, r = 4,5 andA = {1,3,4,5,8,9}. Then we
define the (m− r) × (m− r) matrix L r by

(L r )i j =

{
(Dr )i+q, j , if r mod 4= 0,3
− (Dr )i+q, j , if r mod 4= 1,2

1 ≤ i, j ≤ m− r, (22)

which has the Toeplitz property
(L r )i j = (L r )i+1, j+1, 1 ≤ i, j ≤ m− r − 1,

as it follows immediately from the Toeplitz structure ofDr . Furthermore, it has been proved by [7] that ifr is an even
integer, thenL r is a symmetric positive definite Toeplitz matrix, and ifr is an odd integer, thenL r is a nonsymmetric
positive definite Toeplitz matrix. Since

(M r )cd = (L r )α(c),α(d),1 ≤ c,d ≤ p, (23)

matrix M r consists of the elements from the intersection of the rows and columns ofL r , whose elements are given in
A. In other words,M r is a principal submatrix ofL r . Given the positive definiteness ofL r , the positive definiteness
of M r follows for anyr (see, for example, [17]: p.141).

Moreover, in view of the band structure ofDr and (22), it follows that (L r )i j = 0, unlessq− r ≤ j− i ≤ q. HenceL r

is a banded matrix and sinceM r is a principal submatrix ofL r , it is a banded matrix too. Since the Toeplitz property
of L r is not inherited byM r , we can make use of only the positive definiteness ofM r when solving (20). Thus, (20)
is solved for the components{(us)i+q, i ∈ A} efficiently and stably by Cholesky factorization ifr is even and by band
LU factorization if r is odd. Since this process has to be repeated for eachs ∈ S in order to generateall the basis
elements, we factorizeM r only once and subsequently use this factorization in solving system (20) (of course, each
time, the right hand sidebs changes). Hence the method for generating the basis elements{us : s ∈ S} for the linear
space defined by (12) is complete.

Onceβ is available, the corresponding Lagrange multipliers{λi : i ∈ A} are obtained by the first order conditions
(11), which represent an overdetermined system withm− p redundant equations. Sop equations may be chosen in
order to specify thep unknownsλi . All possible choices will give the same solution, provided the chosen system is
nonsingular. Relying on the work of [7], it is remarkable that the choice ofp out of themequations (11) that resulted
to matrix (21) is suitable to the calculation of the Lagrange multipliers as well. Specifically, we observe that the
central element (there are two such elements with opposite sign, ifr is odd) of each column ofDr is also the largest
in absolute value element of each column and consequently it suffices to let thep × p matrix M r be defined by (21)
and define also thep-vectorsλ̃ andb̃ by

λ̃d = λα(d) and b̃c = 2[XT(Xβ − y)]α(c)+q, 1 ≤ c,d ≤ p.

Hence in view of (11), we derive the positive definite system of equations

p∑

d=1

λ̃d(M r )cd = b̃c, 1 ≤ c ≤ p. (24)

8



Since the transpose ofM r is the coefficient matrix of system (20), its factorization is already available from the
calculation that provided{(us)i+q, i ∈ A}.

The following algorithm implements the procedures described in this section for the calculation ofβ andλ for
eachA.

Algorithm 2 (Determiningβ andλ for eachA)
Input:A
Output: β, namely the solution of the problem that minimizes (2) subject to the equality constraints (12), andλ,
namely the corresponding Lagrange multipliers that satisfy (11)

Step 1 After replacingD̃r by M r in (20), solve (20) for eachs ∈ S, and obtain the components{(us)i+q, i ∈ A}
as follows: if r is even, then apply band Cholesky factorization toM r , and if r is odd, then apply band LU
factorization toM r .

Step 2 Form (XU)T(XU) and solve (15) forθ by Cholesky factorization of (XU)T(XU). The required vectorβ that
minimizes (2) subject to (12) is obtained by substitutingθ into (13).

Step 3 Determine the Lagrange multipliers{λi : i ∈ A}, as follows: If r is even, then solve (24) for{λi : i ∈ A}, by
making use of the Cholesky factors ofM r already available from Step 1, and ifr is odd, then solve (24) by
making use of the LU factors ofM r already available from Step 1. ¥

Matrix M r appears twice in Algorithm 2. First at Step 1, in generating the basis vectors, and second at Step 3,
in obtaining the Lagrange multipliers. Step 1 obtains the solution of system (20) for eachs ∈ S in the expense of
O((m− |A|) |A| r2) computer operations ifr is even, where Cholesky factorization is applied toM r , and inO((m−
|A|) |A|q(r−q)), whereq ' r

2, if r is odd, by LU factorization ofM r . Step 2 requiresO(m(m−|A|)2) operations in order
to form the matrix (XU)T(XU) in (15) andO((m− |A|)3) operations in order to solve the (m− |A|)× (m− |A|) system
(15). Step 3 obtains the Lagrange multipliers in onlyO(|A| r) operations, because the factorization ofM r has already
been carried out at Step 1. Thus the amount of work of Algorithm 2 is of the order ofm(m− |A|)2 + (m− |A|) |A| r2

computer operations, whenm− |A| is a small number.
As mentioned already, a strong reason that favors the calculation ofβ by means of a basis in the linear space

defined by the equality constraints (12) and solving the normal equations (15) is the large size of set|A| that usually
occurs in practice (see numerical results in Section 3). Indeed, nowm− |A|, the order of the normal equations, can be
very small, and, although the normal equations can sometimes be ill-conditioned, ill-conditioning in our case is most
unlikely, because all calculations for deriving the mentioned basis are based on positive definite systems. Moreover,
the sparsity feature of the constraint normals promotes the use of LU and Cholesky factorizations, instead of using
orthogonal factorizations.

Further, we elucidate some differences between Algorithm 1 and QPROG and QPSOL, which are two broadly
used subroutines for general quadratic programming calculations. QPROG is the implementation of the algorithm of
[16] for convex quadratic programming that was developed by [38] and is provided by IMSL. QPSOL is a general
purpose subroutine for quadratic programming that was developed by [14] and versions of it are in NAG and Matlab.
These subroutines are not aimed at large scale problems; the constraint matrices and the HessianXTX are specified
in dense storage format and all numbers are calculated by updating techniques that deal with full matrices, whose
storage requirements areO(m(m− r)). The total number of multiplications for QPROG in an iteration that makes one
addition to and one deletion from the active set has the value (see [38])

W(QPROG)= m(m− r) + 16m2/3− 3m|A| + 5 |A|2 /3

and the corresponding value for QPSOL is (see [14])

W(QPSOL)= m(m− r) + 13.5m2 − 22m|A| + 12|A|2 .

Because of differences in the number of iterations to solve a quadratic programming problem, the complexity of
Algorithm 2 and these two expressions provide only a rough guide to the relative efficiencies of Algorithm 1 and
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subroutines QPROG and QPSOL. However, besides the advantage that we derive fromO(rm) storage, Algorithm 2,
due to taking account of constraint sparsity and Toeplitz property, requires much less work in order to carry out the
tasks that giveW(QPROG) andW(QPSOL). So the efficiency of Algorithm 1 seems to be quite competent and the
apparent gain over a general quadratic programming algorithm is due to the fact that our method is very suitable for a
large scale calculation.

3. Numerical results

This section presents results from simulation experiments in order to demonstrate the model accuracy and the
performance of Algorithm 1. The data were produced in two steps. First, the valuesxt, t = 1,2, . . . , n + m− 1 were
chosen to be the daily U.S. Dollar/Euro Foreign Exchange Rate derived from the Board of Governors of the Federal
Reserve System for the period 1/4/1999 - 5/8/2007, which amounts ton + m− 1 = 2099 observations. Second, each
of the components{yt : t = m,m+ 1, . . . , n+ m−1} was generated from (1) after a function valueβ(zi) was substituted
for βi and a number from the uniform distributionU[−0.05,0.05] was substituted foret, where

β(z) = exp(z), z ∈ [0,1] (25)

and
β(z) = 1 + sin(2z+ 1)/(1 + z2), z ∈ [0,2]. (26)

Function (25) was chosen because it has nonnegative derivatives of all orders and its measurements appear particularly
suitable for fitting with nonnegative differences. Function (26) is a concave/convex function and was chosen to
diversify the final numbers of active constraints, due to the sign changes that occur in its derivatives of all orders. In
this case one may assume that fitting by nonnegative differences is likely to be poor, but the examples below show that
this can be false forr ≥ 3, because the set of vectors defined by (4) is strictly larger than the set of points that can be
interpolated by functions with nondecreasing derivatives of orderr − 1 (see, [4], [5]). For each of the two underlying
functions, the lag length was chosenm = 26,51,76,101 and for eachm the data pointszi have equally spaced values.

All the experiments required the calculation ofβ by minimizing the objective function (2) subject to the constraints
(9), whiler = 2,3,4 and 5. The actual values ofm, r and the following list of calculated parameters are given in Tables
1 and 2 for the underlying functions (25) and (26) respectively:

1. Sββ̂ =

√
m∑

i=1
(β(i) − β̂i)2, the distance between the function valuesβ(i), i = 1,2, . . . ,m and the estimated lag coeffi-

cientsβ̂i , i = 1,2, . . . ,m.

2. PRelError = max
1≤i≤n

|yi − β̂T
ξ(i)|/(max

1≤i≤n
yi − min

1≤i≤n
yi) × 100, the percent relative error of the time series estimation, which

relates the error to the scale of values taken by the data, whereξ(i) is theith column of matrixX.
3. |A∗|, the number of constraints at final active set.
4. The number of active set changes (additions and deletions) required by Algorithm 1 to calculate the lag coefficients.
5. The CPU time in seconds for calculating the lag coefficients.
6. RKKT = max

i∈A∗
|2(Xβ̂ − y)Tξ(i) − ∑

k∈A∗
λk(A∗)(Dr )ik |, the maximum component of the residuals of the Karush-Kuhn-

Tucker (abrev. KKT) conditions (11). In view of (11), the quantityRKKT is zero in exact arithmetic.

The parameter 1 requires the a-priori knowledge of the underlying function of the lag coefficients, therefore it can
be used only for testing purposes. The parameter 2 is the actual time series smoothing quality indicator that the user
has available at the end of the calculation. The parameters 3, 4 and 5 present the computational performance of the
method. The parameter 6 provides a measure of the accuracy of the computer program that implements the method.

The amount of work of the main iterations of Algorithm 1 can be deduced from the fifth column of Tables 1 and
2. Specifically, because each visit to Step 1 adds a constraint and each visit to Step 3 deletes one, column 5 gives
the total number of occurrences of Steps 1 and 3. Column 7 presents the times to perform the calculations in double
precision arithmetic using the standard Fortran 77 compiler of Compaq Visual Fortran 6.1 on a Personal Computer
with an Intel 2.4 GHz processor operating in Microsoft Windows XP with 32 bits word length. A direct comparison
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of the number of active set changes and CPU time indicates the work required by a single call of Algorithm 2 in order
to calculate the lag coefficients and the corresponding Lagrange multipliers.

In almost all cases presented in Tables 1 and 2, Algorithm 1 terminated in fewer thanm− r active set changes
(column 5) with a large active set (column 6), while forr ≤ 4 the accuracy of the computer program seems to be
very good (column 8). In some cases, the algorithm terminated with no active set changes, because all the final active
constraints were identified at Step 0. The best results for Table 1 were obtained whenr equals 3 or 4 and for Table 2
whenr equals 3 or 5, after which the coefficient errorSββ̂ and the time series error reductionPRelError start to increase.
For all values ofm, as r increased the value ofRKKT decreased. For instance, the resultRKKT = 1.37E − 02 in
Table 1, obtained whenm = 101 andr = 5, shows that the arithmetic for calculating the Lagrange multipliers in this
case is less accurate than whenr ≤ 4. The reason is that, asm becomes larger (as, for instance, in the cases with
m = 101), the second derivative matrixXTX is very ill-conditioned, while the calculation is further aggravated by the
errors in the time series measurementsyt. However, it is worth mentioning that cancelation errors do not occur when
calculating the coefficients (10) of scaled higher differences (9), as opposed to the case that makes use of general
divided differences ([37]:p.47).

m r Sββ̂ PRelError Active set changes |A∗| CPU time (sec) RKKT

2 0.0517 0.3463 3 22 0.04 2.42E-09
26 3 0.0338 0.3506 4 22 0.04 1.38E-07

4 0.0571 0.3509 12 19 0.09 3.54E-08
5 0.0752 0.3527 24 20 0.18 1.20E-06
2 0.0393 0.1679 25 44 0.31 1.04E-08

51 3 0.0279 0.1655 52 47 0.60 3.76E-06
4 0.0385 0.1678 41 45 0.59 1.06E-06
5 0.0391 0.1674 83 44 0.89 1.79E-04
2 0.0363 0.1012 43 69 0.85 4.37E-08

76 3 0.0155 0.1000 38 72 0.46 3.07E-05
4 0.0062 0.0969 23 71 0.32 2.15E-06
5 0.0426 0.1025 47 68 0.70 2.78E-03
2 0.0641 0.0673 58 93 1.53 1.55E-07

101 3 0.0104 0.0662 87 94 1.87 3.84E-05
4 0.0078 0.0657 1 96 0.04 5.20E-06
5 0.0117 0.0684 0 96 0.00 1.37E-02

Table 1: Parameters of time series estimation performance and efficiency of Algorithm 1, whenβ(z) = exp(z), z ∈ [0,1]

4. An example on U.S.A. consumption data and a comparison with the method of Almon

In order to illustrate our method we present an application on real annual macroeconomic data derived from
the Bureau of Economic Analysis of the U.S.A. Department of Commerce for the period 1/1/1929 - 1/1/2006, but
we do not discuss the economic implications of the data or the results. The dependent variable is the Real Personal
Consumption Expenditures (PCE) and the independent variable is the Real Gross Domestic Product (GDP) for U.S.A.,
both measured in billions of chained 2000 dollars. The data of our application are reported in Table 3 and amount to
78 pairs of observations. We assume that a change in the GDP will affect not only current consumption, but also future
consumption for a number of time periods. Therefore we calculated the coefficients of the distributed-lag model with
lag lengthm = 5,6,7,8,9 and 10 subject to the constraints (9) on the components ofβ by allowingr = 2,3,4 and 5.
In order to compare results, for each value ofm we calculated the lag coefficients by Almon’s polynomials of degree
k = 1,2,3 and 4. Almon’s coefficients are shown in the third (k = 1), fourth (k = 2), fifth (k = 3) and sixth (k = 4)
column of the relevant part of Table 4 for eachm, while ther-convex coefficients are shown in the seventh (r = 2),
eighth (r = 3), ninth (r = 4) and tenth (r = 5) column respectively. Finally, the unconstrained lag coefficients for
eachm, obtained by minimizing (2), are shown in the last column of Table 4. We see that ther-convex lag coefficients
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m r Sββ̂ PRelError Active set changes |A∗| CPU time (sec) RKKT

2 0.3966 0.3835 6 22 0.06 3.16E-09
26 3 0.1314 0.3297 12 21 0.10 1.13E-07

4 0.2790 0.3597 0 22 0.00 4.35E-08
5 0.1300 0.3297 13 20 0.12 6.32E-07
2 0.5209 0.2567 28 46 0.39 1.43E-08

51 3 0.0652 0.1714 20 45 0.23 1.66E-06
4 0.3496 0.2277 0 47 0.00 8.45E-07
5 0.0778 0.1711 24 44 0.28 7.95E-05
2 0.6208 0.2437 37 72 0.62 1.41E-08

76 3 0.0633 0.1201 47 71 0.68 1.20E-05
4 0.4184 0.2069 0 72 0.00 1.62E-06
5 0.0938 0.1210 85 69 1.12 1.00E-03
2 0.7054 0.2644 59 93 1.26 3.64E-08

101 3 0.0766 0.0974 90 94 1.42 3.63E-05
4 0.4793 0.2021 0 97 0.00 4.49E-06
5 0.0842 0.0991 113 93 1.94 5.87E-03

Table 2: As in Table 1, butβ(z) = 1 + sin(2z+ 1)/(1 + z2), z ∈ [0,2]

cannot deviate far from the polynomial of degreer − 1 and, indeed, they do so in a smooth manner alternating above
and below the polynomial curve.

In Figs 5, 6, 7 and 8 we display the unconstrained, ther-convex and thekth degree Almon polynomial lag coef-
ficients of Table 4 form = 8, while r = 2,3,4 and 5, andk = 1,2,3 and 4 respectively. The condition number of
the 8× 8 matrixXTX was found by Matlab to be equal to 170080, which exhibits the ill-conditioned character of the
problem. Since ther-convex model is a piecewise polynomial, it seems to be more suitable in following the pattern
of the unconstrained lag coefficients, than the corresponding polynomial of (r − 1)th degree. Indeed, in Fig. 5 the
2-convex model is a linear spline with interior knots at the second and fourth data point as opposed to Almon’s straight
line model. In Fig. 6 the 3-convex model coincides with Almon’s 2nd degree polynomial, because all the constraints
(9) are satisfied as equalities. In Fig. 7 the 4-convex model contains two overlapping cubics and is obtained by mini-
mizing (2) subject to the equality constraintsβ6 − 4β5 + 6β4 − 4β3 + β2 = 0 andβ7 − 4β6 + 6β5 − 4β4 + β3 = 0. In Fig.
8 the 5-convex model contains just one quartic and is obtained by minimizing (2) subject to the equality constraint
−β7 + 5β6 − 10β5 + 10β4 − 5β3 + β2 = 0. Moreover, a standard result from sensitivity analysis is that if a Lagrange
multiplier is large, then the optimal valueF(β̂) is sensitive to the perturbation of the corresponding constraint, while
if a Lagrange multiplier is small, the dependence is much weaker. Thus, the larger the multiplier, the stronger the
dependence upon the corresponding constraint. The following table indicates these dependencies by reporting the
Lagrange multipliers for each case (the zero Lagrange multipliers correspond to non-active constraints).

r = 2 r = 3 r = 4 r = 5
λ1 0.00 95836.10 0.00 0.00
λ2 1779.47 217696.21 830.12 438.44
λ3 0.00 265146.41 90.66 0.00
λ4 22643.45 187651.75 0.00
λ5 26744.57 65369.76
λ6 10783.24

5. Conclusions

We have developed a new method for calculating distributed-lag coefficients in time series estimation subject to
the condition that therth consecutive differences of them coefficient estimates are nonnegative, which may well be
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GDP PCE GDP PCE GDP PCE

865.2 661.4 2212.8 1385.5 5291.7 3422.2
790.7 626.1 2255.8 1425.4 5189.3 3470.3
739.9 606.9 2301.1 1460.7 5423.8 3668.6
643.7 553.0 2279.2 1472.3 5813.6 3863.3
635.5 541.0 2441.3 1554.6 6053.7 4064.0
704.2 579.3 2501.8 1597.4 6263.6 4228.9
766.9 614.8 2560.0 1630.3 6475.1 4369.8
866.6 677.0 2715.2 1711.1 6742.7 4546.9
911.1 702.0 2834.0 1781.6 6981.4 4675.0
879.7 690.7 2998.6 1888.4 7112.5 4770.3
950.7 729.1 3191.1 2007.7 7100.5 4778.4
1034.1 767.1 3399.1 2121.8 7336.6 4934.8
1211.1 821.9 3484.6 2185.0 7532.7 5099.8
1435.4 803.1 3652.7 2310.5 7835.5 5290.7
1670.9 826.1 3765.4 2396.4 8031.7 5433.5
1806.5 850.2 3771.9 2451.9 8328.9 5619.4
1786.3 902.7 3898.6 2545.5 8703.5 5831.8
1589.4 1012.9 4105.0 2701.3 9066.9 6125.8
1574.5 1031.6 4341.5 2833.8 9470.3 6438.6
1643.2 1054.4 4319.6 2812.3 9817.0 6739.4
1634.6 1083.5 4311.2 2876.9 9890.7 6910.4
1777.3 1152.8 4540.9 3035.5 10048.8 7099.3
1915.0 1171.2 4750.5 3164.1 10301.0 7295.3
1988.3 1208.2 5015.0 3303.1 10703.5 7577.1
2079.5 1265.7 5173.4 3383.4 11048.6 7841.2
2065.4 1291.4 5161.7 3374.1 11415.3 8091.4

Table 3: The values of GDP and PCE for the years 1929-2006 (U.S.A. Department of Commerce)
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Figure 5: The unconstrained (+), ther-convex (o) and thekth degree Almon polynomial (♦) lag coefficients of Table 4, whenm = 8, r = 2 and
k = 1

applied for the case where the differences are non-positive.
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Almon’s coeffs r-convex coeffs unconstrained
m βi k = 1 k = 2 k = 3 k = 4 r = 2 r = 3 r = 4 r = 5 lag coefficients

β0 0.1751 0.3955 0.3383 0.3572 0.3347 0.3828 0.3828
β1 0.1593 0.0474 0.1344 0.0848 0.1226 0.0014 0.0014

5 β2 0.1434 -0.0787 -0.0786 -0.0171 -0.0316 0.0984 0.0984
β3 0.1276 0.0172 -0.0693 -0.1190 -0.1280 -0.2024 -0.2024
β4 0.1118 0.3352 0.3936 0.4125 0.4211 0.4380 0.4380
β0 0.1399 0.3119 0.2900 0.3214 0.3174 0.2476 0.3272 0.3759 0.3346
β1 0.1325 0.0974 0.1191 0.0490 0.0622 0.1409 0.0441 -0.1532 0.0074

6 β2 0.1252 -0.0134 -0.0003 0.0385 0.0286 0.0445 0.0310 0.2955 0.1044
β3 0.1178 -0.0205 -0.0334 0.0050 -0.0050 -0.0415 0.0142 -0.1602 -0.0613
β4 0.1105 0.0762 0.0547 -0.0159 0.0048 -0.0107 -0.0152 0.0741 0.0263
β5 0.1031 0.2766 0.2990 0.3312 0.3210 0.3508 0.3278 0.2974 0.3176
β0 0.1219 0.2452 0.2807 0.3099 0.3135 0.2271 0.3198 0.3097 0.3283
β1 0.1165 0.1158 0.0923 0.0436 0.0326 0.1364 0.0266 0.0441 -0.0157
β2 0.1110 0.0360 0.0102 0.0121 0.0296 0.0683 0.0197 0.0117 0.1060

7 β3 0.1056 0.0060 0.0059 0.0407 0.0267 0.0228 0.0389 0.0405 -0.0544
β4 0.1002 0.0258 0.0513 0.0525 0.0522 0.0257 0.0587 0.0534 0.1163
β5 0.0948 0.0953 0.1181 0.0689 0.0777 0.0769 0.0608 0.0680 0.0411
β6 0.0894 0.2146 0.1780 0.2089 0.2041 0.1764 0.2120 0.2092 0.2147
β0 0.1152 0.1963 0.2691 0.2964 0.3097 0.1963 0.3021 0.3030 0.3105
β1 0.1089 0.1194 0.0886 0.0530 0.0177 0.1194 0.0418 0.0430 0.0037
β2 0.1027 0.0663 0.0149 0.0033 0.0301 0.0663 0.0114 0.0039 0.0862

8 β3 0.0965 0.0369 0.0147 0.0344 0.0425 0.0369 0.0305 0.0408 -0.0455
β4 0.0903 0.0313 0.0544 0.0736 0.0596 0.0313 0.0682 0.0632 0.1112
β5 0.0841 0.0493 0.1006 0.0877 0.0768 0.0493 0.1057 0.1033 0.0915
β6 0.0779 0.0911 0.1199 0.0839 0.0939 0.0911 0.0643 0.0678 0.0707
β7 0.0717 0.1567 0.0787 0.1090 0.1110 0.1567 0.1171 0.1161 0.1127
β0 0.1114 0.1646 0.2321 0.3001 0.2778 0.1646 0.2795 0.2795 0.2961
β1 0.1045 0.1167 0.1001 0.0309 0.0343 0.1167 0.0619 0.0619 -0.0085
β2 0.0976 0.0807 0.0378 -0.0062 0.0413 0.0807 -0.0055 -0.0055 0.1159
β3 0.0907 0.0565 0.0258 0.0458 0.0483 0.0565 0.0204 0.0204 -0.0848

9 β4 0.0838 0.0442 0.0447 0.0935 0.0553 0.0442 0.0828 0.0828 0.1330
β5 0.0769 0.0438 0.075 0.0933 0.0623 0.0438 0.1250 0.1250 0.0824
β6 0.0700 0.0553 0.0975 0.0513 0.0692 0.0553 0.0901 0.0901 0.1649
β7 0.0631 0.0787 0.0927 0.0234 0.0762 0.0787 -0.0785 -0.0785 -0.1513
β8 0.0562 0.1140 0.0413 0.1151 0.0832 0.1140 0.1732 0.1732 0.2013
β0 0.1050 0.1477 0.1817 0.3093 0.2357 0.1334 0.2911 0.2748 0.2975
β1 0.0986 0.1118 0.1079 0.0071 0.0557 0.1093 -0.0053 0.0526 -0.0308
β2 0.0922 0.0835 0.0644 -0.0279 0.0540 0.0885 0.0430 -0.0092 0.0970
β3 0.0858 0.0626 0.0447 0.0430 0.0523 0.0712 0.0384 0.0096 -0.0404

10 β4 0.0794 0.0492 0.0422 0.1103 0.0506 0.0572 -0.0048 0.0616 0.0737
β5 0.0730 0.0434 0.0504 0.1166 0.0489 0.0467 0.1585 0.1318 0.1120
β6 0.0667 0.0450 0.0627 0.0561 0.0472 0.0395 0.1392 0.1313 0.1583
β7 0.0603 0.0542 0.0726 -0.0248 0.0455 0.0358 -0.0033 0.0040 -0.0173
β8 0.0539 0.0708 0.0734 -0.0280 0.0438 0.0355 -0.2098 -0.2061 -0.1963
β9 0.0475 0.0949 0.0586 0.1967 0.1263 0.1494 0.3145 0.3113 0.3077

Table 4: Almon’s (k = 1, 2, 3, 4),r-convex (r = 2, 3 , 4, 5) and the unconstrained lag coefficients form = 5,6,7,8,9,10
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Figure 6: As in Fig. 5, butr = 3 andk = 2
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Figure 7: As in Fig. 5, butr = 4 andk = 3

The method is a strictly convex quadratic programming algorithm that takes account of the least squares objective
function and the fact that each of the constraint functions depends on onlyr + 1 adjacent components of the lag
coefficients that give a Toeplitz structure. We have developed efficient procedures for the solution of the equality
constrained minimization problem and the calculation of the corresponding Lagrange multipliers that occur during the
active set revisions of the quadratic programming iterations. Specifically, we have considered a particularly convenient
basis{us : s ∈ S} in the linear space of active constraint gradients, where the definition ofS takes account of the non-
active constraints, and we worked with reduced quantities throughout the calculation. Four advantages were gained.
One is that the number of variables that occurs in practice for our calculation is much lower thanm, the original
number of variables. The second is that the active constraints are satisfied automatically due to the choice of the basis.
The third is that the calculation of the basis depends on a positive definite subsystem of equations derived from the
active constraints, where positive definiteness comes from the Toeplitz structure. The fourth is that the matrix that
occurs in the calculation of the Lagrange multipliers is the transpose of the matrix of the subsystem that was already
used for obtaining{us : s ∈ S}. Therefore, a factorization of this matrix is available and the Lagrange multipliers
can be found only by a small amount of extra work after the basis elements are calculated. The particular choice of
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Figure 8: As in Fig. 5, butr = 5 andk = 4

{us : s ∈ S} is also important in its own right, because it provides a basis for the linear space of piecewise polynomials
that are defined by the difference equations∆r

jβ = 0, j ∈ A. This choice provides a major computing saving, because
although the size of the active sets that are carried out during the calculation is usually quite close tom− r (which
is the number of constraints of the quadratic programming problem), we solve onlyr × r (about) systems, wherer is
a small number in practice. Moreover, the calculation is stable, because all the coefficient matrices of the mentioned
subsystems of equations are positive definite.

The question arises of a suitable choice ofr in general. If there exists appropriate prior information to be taken into
account, then our method may have advantages. If the right choice ofr is a matter of experimentation, the user may
try iteratively some values ofr, while simultaneously keep checking adjacent values of the parametersF(β̂), PRelError

andRKKT . If each parameter possesses approximately the same value for successiver, while RKKT is sufficiently
small, then these values ofr are most likely to provide adequate choices. Instead, a model underfit is usually indicated
by a largePRelError and smallRKKT , where the latter indicates accurate termination and the former large deviations
of the estimated components. Furthermore, if for some values ofr, the parametersF(β̂) andPRelError take isolated
values, whileRKKT is large, then the user should be suspicious of inaccuracies due to round-off, for the reasons given
in Section 3.

The proposed method seems to be a useful one for distributed-lag estimation, which is at least more general and
comparably more competent than Almon’s polynomial family method. The connection with Almon polynomial is that
this polynomial satisfies all ourrth difference inequality constraints as equalities, so the Almon lag coefficients lie on
a polynomial of degreer − 1. Our model, as a piecewise polynomial, is much more successful in practice, because
it allows that number of overlapping polynomial pieces of degreer − 1, which the quadratic programming method
automatically provides.

Three modeling advantages of using the new method are that it achieves a rather weak representation of the lag
coefficients, which is highly desirable in lag estimation practices, it obtains well recognized structures due to prior
knowledge of ther-convexity property and it provides estimates ofrth derivative values of the underlying relation.
The Fortran program we have developed for ther-convex model required indeed a good deal of effort and hopefully
it would be very helpful for empirical analyses and applications to real problems. Since no assumption is made about
the nature of an underlying relation, it is also indicated that this method may be of general use.
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