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A linearly distributed lag estimator with-convex coéicients

E. E. Vassiliod, I. C. Demetriott!

Abstract

The purpose of linearly distributed-lag models is to estimate, from time series data, values of the dependent variable
by incorporating prior information of the independent variable. A least squares calculation is proposed for estimating
the lag coéicients subject to the condition that thil differences of the cdicients are nonnegative, wherés a
prescribed positive integer. Such priors do not assume any parameterization offfleerts, and in several cases
provide such an accurate representation of the prior knowledge, so as to compare favorably to established methods.
In particular, the choice of the prior knowledge parametgives the lag caéicients interesting special features such

as monotonicity, convexity, convexjgoncavity, etc. The proposed estimation problem is a strictly convex quadratic
programming calculation, where each of the constraint functions depends badjacent lag cd&cients multiplied

by the binomial numbers with alternating signs that arise in the expansion oftttpower of (1- 1). The most
distinctive feature of this calculation is the Toeplitz structure of the constrairtficieat matrix, which allows the
development of a special active set method that is faster than general quadratic programming algorithms. Most of
this dficiency is due to reducing the equality-constrained minimization calculations, which occur during the quadratic
programming iterations, to unconstrained minimization ones that depend on much fewer variables. Some examples
with real and simulated data are presented in order to illustrate this approach.

Key words: Almon polynomial, approximation, consumptionffdrence, distributed-lag model, least squares,
r-convexity, regression, quadratic programming, time series, Toeplitz matrix

1. Introduction

The purpose of distributed-lag models is to estimate, from time series data, yahssncorporate prior infor-
mation of the independent varialske Specifically, the data are the pairs, §:),t = 1,2,...,n+ m—- 1, where we
assume thay; depends not only o, but also onm — 1 past values ok;, wherem is a prescribed positive num-
ber. In econometric and engineering applications (see, for instance, [10], [12], [18], [25], [26], [33], [44]) a linearly
distributed-lag model of lengtim is defined as

m
Yt = Zﬂixt—m +& t=m (1)
i=1

whereBy, 5o, . . ., Bmare the unknown lag cdiécients and; is a random variable with zero mean and constant variance.

For example, one may wish to model consumption expendituresy{).®ith respect to changes of income (i>g)

over time. Another example from political science is to model reciprocity and enduring rivalries over some periods.
Distributed-lag modeling refers to only the laspbservations of;,t = 1,2,...,m—-1,m,...,m+ n- 1, because

m — 1 degrees of freedom are lost due to (1). Further, the issue ohtbelection depends on the data and may

be decided with statistical means (see, for example, [28]:p.119). Adopting matrix notation, the unconstrained lag-

distribution problem is to determine a vecgr = (81, 82, . . . , Sm) that minimizes the objective function

F@) = (y - XB)(y - Xp), 2)
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wherel/T = (Ym, Ymi1» - - - » Ymen—1) @ndX is then x m matrix of current and lagged valuesxfdefined as

Xm Xm-1 Xm-2 - X

Xm+1 Xm Xm-1 e X2

X =] Xm2 Xm+1 Xm e X3
Xmen-1  Xmen-2  Xmin-3 0 Xn

In the development of suitable algorithms for unconstrained least squares estimgtion@fmportant considera-
tion is that often there is high multicollinearity among this giving a notorious ill-posed inverse problem (for general
references see, for example, [20], [43], [45]). Moreover, in the usual case of presence of errors of measurement in the
Vt's, the resulted unconstrained estimates are corrupted by distortions. Often, however, there is a discernible trend in
these estimates (which should depend on the choiog tifat may be helpful in considering some smoothness priors
(see example in Section 4).

There have been several suggestions in the econometric literature to put some structurg 'sirntlig). They
all impose some a priori structure on the form of the lag, in order to combine prior and sample information in the
estimation of the regression d&ieients. A very popular approach is the Almon model [1], which assumes that the
lag cosficients lie on a polynomial of degree- 1, wherer is a prescribed integer. Shiller's method [41], as a variant
of this model, assumes that the lag ffméents lie close to, rather than on, a polynomial. Jorgenson’s method [24]
approximates the lag distribution by the ratio of two polynomials. More models are found in [9], [21], [22], [29], [31],
[33], [36], [42], etc, while some of them are implemented in software packages (see, for instance, [40]). All these
models assume that the underlying function of the lagfments can be approximated closely by a form that depends
on only a few parameters. However, over the years, literature on the subject agrees that some weak representation of
the lag cofficients is a sensible requirement for a satisfactory model estimation (see, for example, [15], [19], [21],
[33] and references therein).

In this paper a method is suggested that seeks lagiceatsp:, 5o, . . ., Bm such that theth differences (see, for
example, [23])

jHr

AEﬁ:%;(_l)r”j(iij ),Bi, i=12...,m-r 3

are nonnegative, wheras much smaller tham. Specifically the method minimizes (2) subject to the conditions
AB>0, j=12...,m-r, 4)

but it may well be applied for the case where thﬁed'encesng/}, j =1,2,...,m—r are non-positive. Ideally, the

fitted function of the lag cd@cients is to have a nonnegativih derivative. Functions like this are calledconvex
(see [27] for their fundamental role in total positivity) and we analogouslyreadinvex a vector whose components
satisfy the constraints (4).

If (4) are exactly satisfied, then our model is identical to Almon’s polynomial of degrde However, our model,
due to ther-convexity properties g8, allows some constraints to be amply satisfied, which is equivalent to relaxing
some dfferences in Almon’s polynomial. Hence our approximation is less tight than that of Almon’s, providing a
weaker structure on the lag deients. In order to answer the question on the nature of #t@nvex vectopB, we
consider these indices of the estimated componeng; sfich thatAjﬁ # 0, and seek the intervals on which the
components of satisfy the equationAjﬁ = 0. Leto andr be any indices such thatd o < r < m. If Afj,B =0, for
j=oo+1,...,t-mifo=10rAl g+ 0andifr =morA’_ A #0,thens,,B,.1....,5: are interpolated by
a polynomial of degree at most- 1. Then the estimated valugs : i = 1,2,..., m} lie on a piecewise polynomial
approximation, where the polynomial pieces are of degree atmdst The polynomial pieces usually overlap, while
their breaks are found automatically by the optimization calculation. This not only makes our technique more flexible
than the Almon polynomial, but also provides certain advantages over the spline distributed-lag method of [3], where
the breakpoints have to be specified in advance.

The approach presented here may be generally applied to a variety of situations in which one knows some proper-
ties of an underlying relation, but one does not hav@ant information to put the relation into any simple parametric
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Figure 1: MatrixD;, whenm = 14 andr = 4

form. Two immediate advantages are gained by this approach to lag estimation. The first one is that it avoids the as-
sumption that the relation has a form that depends of a few parameters, which occurs in many other techniques as
already being mentioned. The second one is that it obtains properties-¢oavexity, see [4]) that occur in a vari-

ety of underlying relations of the lag cieients, which depend on the valuergfsuch as monotonicity, convexity,
concavity, convexitjconcavity (see [6], [8], [39]) etc. For the particular case 1 we obtain the monotonically
increasing components

BL<B2<- < Pm )

which are useful i in (1) becomes less significant as time proceeds. In many real cases, as in production situations,
the case = 2 in (4) may be considered. Now the lag-fid@ents are subject to the increasing retysps- 81 <
B3 —B2 < -+ < Bm—Bm-1, Which is equivalent in assuming thi@ : i = 1,2,..., m} satisfy the convexity conditions
(i.e. they lie on a convex curve)
Bizz—2Bi:1+Bi =0, i=12....m=-2 (6)

Respectively, the concavity conditions (cf. decreasing returns) are
Biva—28,1+Bi <0, i=12....m-2 7)

Further, when the lag-cfiicients follow a sigmoid trend or the underlying relation shows an inflection point and away
from this the underlying relation seems to be convex and concave, then it would be suitable to all@vin (4),
which gives the conditions

Bis3a=3Bi2+3Bisa—F =20, i=12....m-3 8)

With these templates at hand we express the constraints (4) in the matrix form
DiB =0, ©)
whereD, is them x (m - r) rectangular matrix, whose elemeni3; )j; are defined by the relation
il L .
0 AL . <i<j+r, =12,....m-r
0 ={ Y (I—J) pstsiern ] (10)
0, otherwise

Now the nonzero components of tfté column ofD, are a constant multiple of the terms that occur in ttiedences
(3) giving a Toeplitz pattern that depends on the value &or instance, we leh = 14 and displayD; in Figs. 1 and
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Figure 2: MatrixD;, whenm = 14 andr = 5

2, forr = 4 and 5 respectively. General references to Toeplitz matrices may be found, for example, in [2], [17] and
[34].

Since the constraints ghare linear and consistent and since the second derivative matrix of (2) with respect to
is twice the matrixXT X, the problem of minimizing (2) subject to (9) is a convex quadratic programming problem.
Given thatXTX is positive semidefinite, there is a global solution an&TiX is positive definite the solution is
unique,3 say. Of course, it is easy to construct a vectauch that some row of matriX is a multiple of another
row, but dependencies are readily detected in the algorithms. In this paper, it is assumédtimpositive definite.
Therefore it is usually straightforward to calcul@téy standard quadratic programming methods (see, for example,
[11], [13] and [30]), but careful attention is given to solving this probleficiently by taking account of the Toeplitz
structure of the constraint gradients for the various values of

Our model, as defined by (1) and the minimization of (2) subject to (9), is an instance of the general inequality
constrained least-squares regression model of [32] that uses prior and sample information for parameter estimation.
Sampling and statistical properties as well as some important questions of the general problem that reflect on our
special problem are considered by [10] and [32], but they are beyond the scope of our paper.

In Section 2 we present and consider the method that is used. The method employs a quadratic programming
algorithm, which is variant of the algorithms of [8] and [16]. The main feature of this method is a suitable transforma-
tion in the linear space of variables, which is used to convert the equality-constrained subproblems that arise during
the quadratic programming iterations into unconstrained ones. Further, the calculation of the Lagrange multipliers
becomes veryfécient by making use of some methods that have been developed independently by [7]. The latter two
calculations take advantage of a common submatrix that occurs during each iteration of the quadratic programming
algorithm. Further, we compare théieiency of our method with those in [16] and [14]. In Section 3 we present
results from a simulation that demonstrate the performance of our method. In Section 4 we report results of our
method on real data and compare with the method of Almon. In Section 5 we present some concluding remarks. A
Fortran version of our method has been written by one of the authors (EEV). It consists of about 1300 lines including
comments.

2. The method of calculation of the lag cofficients

This section develops a method for solving the problem of Section 1 that depends on the Karush-Kuhn-Tucker
optimality conditions (see, for example, [35]). They state ;_hatg if and only if the constraints (9) are satisfied and



there exist Lagrange multipliess > 0, € A such that the equation

2XT(XB-y) = Z Aa, (11)
i€eA
holds, whereA is the subsefi : A{5 = 0} of constraint indices and € R™ is the gradient of\{3 by a constant with
respect tg8. We definep; = 0, fori € [1, m—r]\A and denote thent — r)-vector of Lagrange multipliers hy.
The method employs an extension of the strictly convex quadratic programming calculation of [8], which is
based on the primal-dual active set method of [16]. It generates a sequence of subsets of the constraint indices
{1,2,...,m-r}, where for each subsef| say, the equations (or active constraints)

ap=0 ieA (12)

are satisfied and the vectgris obtained by minimizing the objective function (2) subject to the equations (12).
Moreover, unique Lagrange multiplieds i € A are defined by the first order optimality condition (11).

The dficiency of these operations depends on the remark that the minimization of function (2) subject to some
prescribed dterences being zero is reduced to an unconstrained minimization problem with fewer variables. The cal-
culation begins fromA = {1,2,...,m—r}. Then it proceeds by dropping constraint indices frghthat correspond
to negative Lagrange multipliers, one at a time, until all multipliers become nonnegative. This provides the starting
point for the quadratic programming procedure. Quadratic programming generates a finite number of sets of indices
of different active constraints, so that at the beginning of an iteration the Lagrange multipliers are all nonnegative.
If the associated estimate gfviolates some constraints then the most violated constraint index is add@datad
other constraint indices are removed frofirif necessary, so that the Lagrange multipliers become nonnegative again,
which completes an iteration. Termination occurs when the Karush-Kuhn-Tucker conditions are satisfied.

Algorithm 1 (Quadratic programming for the lag d@ieientsg;,i = 1,2,...,m)
Input: n,m,r and &, y1).t=12,....m+n-1
Output: solution/_i and the associated Lagrange multipliers

Step 0 (Initialization) SetA = {1,2,...,m-r} and call Algorithm 2 (which is described later) to calculgtand
A. If any negative multipliers occur, then start removing the corresponding constraint indicegifrone at a
time, while recalculating each tingeand2, until the multipliers become nonnegative.

Step 1 (Testing the constraints) If the constraints (9) are satisfied, then terminate. Otherwise;_;recgrdind the
most violated constrainngg < 0 say, adk to A and calculatg and (by Algorithm 2).

Step 2 (Testing the sign of the Lagrange multipliers)iif > 0, i € A, then branch to Step 1, otherwise proceed to
Step 3.

Step 3 (Recovering nonnegativity of the Lagrange multipliers) Seek the greatest vatusuzh that the numbers
(1-0)u;i +04;,1 € Aare nonnegative, which implies00 < 1. If p is the value of that gives (1 0)u; +64; = 0,
then remove from A, replaceu by (1-6)u+64, calculateg and (by Algorithm 2) and branchto Step2.

Because the number of constraints is finite, Algorithm 1 either terminates or cycles. The following propositions
prevent cycling in absence of rounding errors. Step 0 provides the starting point. Step 1 is entered either from Step
0 or from Step 2. Inserting constraints at Step 1 makes the value of the objective function strictly higher than the
value it had at the previous occurrence of Step 1. Step 2 is entered from Step 1 or Step 3 and checks the sign of the
Lagrange multipliers. Step 3 is entered from Step 2 in order to recover nonnegativity of the Lagrange multipliers.
Now bothu andA are available, the componentsofire nonnegative and one or more of the componentsare
negative. The first visit to Step 3 picks an ingethat is diferent fromk of Step 1. Thip cannot be inA on the next
visit to Step 1. Deleting constraints at Step 3 decreases the value of the objective function, but keeps it strictly larger
than the value it had at the previous instance of Step 2. Hence at least one of the deleted constraint indices cannot
be inserted until after the algorithm branches to Step 2. Since Step 2 is usually reached after some insertions and the
objective function strictly increases at consecutive instances of Step 2, cycling is impossible in exact arithmetic, so
the algorithm terminates. These propositions are proved in [8].
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Lemma 1. Algorithm 1 terminates at the solution of the problem that minimizes the objective function (2) subject to
the constraints (9).

Proof: See Theorem2of[8]. W

An important feature of any active set method conceffisient solution of the equality constrained minimization
problems that occur when changes are madé.t@elow in this section we take advantage of the Toeplitz structure
of matrix D, and address two topics. First, we construct a basis for the linear subspace defined by (12). Second, we
present #icient methods for the minimization of function (2) subject to the linear constraints (12) and the calculation
of the corresponding Lagrange multipliers from (11).

Since there are no redundant equations in (12), as it may be proved by taking account of the fact that each
depends on only + 1 adjacent components, there are- p degrees of freedom in the variabjgsg., . . ., Bm, where
p = Al is the number of elements A1. It follows that we can findn— p linearly independent+vectors{u, : s€ S},
for someS C {1,2,...,m} to be defined later, such thglltTgS = 0,s€ S, forall j € A. Now for any vectop that
satisfies (12) there exist— preal numbersg; ;i = 1,2,...,m— p} such that

m-p
B= )0y (13)
i=1

where we letr(1), 0(2),...,0(m- p) be the elements & in ascending order.

BecauseA is usually kept large during the iterations of Algorithm 1, working with the p variables{g; : i =
1,2,...,m- p}instead of with{g; : i = 1,2,...,m} is advantageous in that there are fewer variables and that the
equations (12) are satisfied automatically. Suppose that afpasis € S} is known and leU be them x (m - p)
matrix whose columns are the basis elemeit§ hen we substitute (13) into (2) and we obtain the reduced quadratic
function

(6) = I1XU6 - i3, (14)

whered" = (01,62, ...,0m-p). Since the second derivative matrix with respect tf function (14) is the i — p) x
(m - p) positive definite matrixXU)" (XU), a unique minimizer of(6) exists and is obtained by applying Cholesky
factorization to the first order condition of (14), namely the normal equations

(XU)T(XU)g = (XU)Ty. (15)

As pin practice is close tsm—r, 6 is obtained by solving axr (about) system, whetreis a small number. Thus, this
procedure provides a stable and economical calculation for obtainifigeng is derived by substituting into (13).

The question is whether we can find a suitable basis for the linear subspace of yedédised by the active
constraints (12) or equivalently by the equatiais = 0,i € A. Motivated by [4], we develop a basis, which is a
convenient and veryficient choice for our problem, because it is naturally defined from the non-active constraints
throughout the calculation and because the matrices that appear are banded and positive definite. The rest of the section
includes technical details for defining and calculating this basis as well as for calculating the Lagrange multipliers.

Having in mind the paragraph that follows relation (4), we associate a break in the mentioned piecewise polyno-
mial approximation with the central ciient (there are two such cieients with opposite sign, ifis odd) of a non-
active diterence. Thus, ld{ = {1,2,..., m—r}\A be the set of indices of constraints that @}6 #0,1<j<m-r,
let g be the least integer such thai 2 7 and letq = g — 1. Then the indices of the central ¢beients of non-active
differences are

{k+q: ke K}

and they are are going to be associated Wth= m —r — p basis elements. The additiorrabasis elements derive
from those additionad] indices at the left end and- q indices at the right end of the interval g, m—-r + (], as
they are specified by the the index set

Q={1...,.qqu{m-r+qg+1,...,m}.

We also let
S={k+q: keK}uQ.
6
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Figure 3: MatrixM, associated witlD,, whenm = 14,r = 4 andA = {1,3,4,5,8,9}. D, is displayed in Fig. 1

Then we define the vectotg, for s€ S as a solution to the equations
(U =ds, forsteS (16)

and
a'u,=0, ifieAandses, (17)

wheredg; is the Kronecker's delta, and we prove that they form a basis.

Lemma 2. The vectoray,, for s € S, which are defined by (16) and (17), form a basis for the p dimensional
subspace of the vectqfsthat satisfy the equality constraints (12).

Proof: Letns, s€ S be scalars such that
> nu =0 (18)
seS

Considering the componentst € S of equation (18), in view of the definition (16), gives immediatgly=
0, forall se S. Hence, the vectors,, s € S are linearly independent. Because of (17), these vectors belong to the
subspace that satisfies the active constraints (12). $ineq : ke K}nQ = 0, the vectorsi,, se S are all diferent.
Moreover,|[K| = m—r — pand|S| = [K| +|Q] = (m-r — p) +r = m— p, so the dimension of the subspace under
consideration isn— p. ]

We remind thafi + q: i € A} n{k+q: k € K} =0, namely thatA andK have no common elements and we
turn to the calculation of the basis elements. Sincenthep components(u,);, t € S} of u are defined by (16) and
since{i+q:ieA}US = {1,2,...,m}, the remainingo components aru,)i.q, i € A}. These components are
obtained by solving @ x p system of equations, whose ¢eient matrix elements are derived by deleting a column
of the p x m codficient matrix of (17) for eacls € S (we shall see later that the transpose of this reduced matrix
occurs also in the calculation of the Lagrange multipliers) and whose right hand side is own to (16). Specifically, we
let (1), (2), . . ., a(p) be the elements ofl in ascending order and obtain the reduged p matrix D, by

(Or)ed = (Dr)a(g)+ga(@) 1< c.d<p. (19)

Hence and in view of (17) and (16), the compon€fitg);.q, i € A} for a specifics € S can be found by solving the
system

P
D BNcaUetara = (B), L<cd<p, (20)
d=1

where vectob, s€ S, due to (16), is the negative of tisth column of the cofiicient matrix of system (17).
Motivated by the sign pattern &, (as, for instance, it is exhibited by Figs. 1 and 2), we claim Bas positive
definite ifr mod 4= 0, 3 and negative definite fmod 4= 1, 2. In order to prove this claim we set

_ (f)r)a(c)+q,a(d), if r mod4=0,3
(Mr)ea = { ~(DN)a©sqa@, if rmod4=1,2 l<cd<p (21)
7
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Figure 4: Asin Fig. 3, but = 5. Dy is displayed in Fig. 2

while, by way of illustration, in Figs. 3 and 4 we sbg whenm = 14,r = 4,5 andA = {1,3,4,5,8,9}. Then we
define thein—r) x (m—r) matrixL, by

(Lo :{ (Dr)isq,j» if rmod4=0,3

~(Di)q;. ifrmoda=12 tShi=m=r (22)

which has the Toeplitz property
(Lo)ij = (Le)isnjer, 1<i,j<m—r -1,

as it follows immediately from the Toeplitz structuredf. Furthermore, it has been proved by [7] that i an even
integer, therL, is a symmetric positive definite Toeplitz matrix, and i6 an odd integer, thel, is a nonsymmetric
positive definite Toeplitz matrix. Since

Mp)ed = (Lr)a@a@- 1 < c,d < p, (23)

matrix M, consists of the elements from the intersection of the rows and colunins whose elements are given in
A. In other wordsM, is a principal submatrix of .. Given the positive definiteness bf, the positive definiteness
of M, follows for anyr (see, for example, [17]: p.141).

Moreover, in view of the band structure Df and (22), it follows thatl(,);; = O, unlessy—r < j—i < g. Hencel,
is a banded matrix and sind#, is a principal submatrix of ,, it is a banded matrix too. Since the Toeplitz property
of L, is not inherited byM,, we can make use of only the positive definitenesBlpfwhen solving (20). Thus, (20)
is solved for the componentfu,)i.q. i € A} efficiently and stably by Cholesky factorizatiorrifs even and by band
LU factorization ifr is odd. Since this process has to be repeated for sea&l$ in order to generatall the basis
elements, we factoriz®l; only once and subsequently use this factorization in solving system (20) (of course, each
time, the right hand sidb, changes). Hence the method for generating the basis elefognts € S} for the linear
space defined by (12) is complete.

Oncep is available, the corresponding Lagrange multipligks i € A} are obtained by the first order conditions
(11), which represent an overdetermined system with p redundant equations. Spequations may be chosen in
order to specify thep unknownsy;. All possible choices will give the same solution, provided the chosen system is
nonsingular. Relying on the work of [7], it is remarkable that the choice afit of them equations (11) that resulted
to matrix (21) is suitable to the calculation of the Lagrange multipliers as well. Specifically, we observe that the
central element (there are two such elements with opposite sigis ddd) of each column dd, is also the largest
in absolute value element of each column and consequentliyfitesito let thep x p matrix M, be defined by (21)
and define also thp-vectorsi andb by

;id = /la,r(d) and BC = 2[XT(X[_3 - )_/)]a(c)+q’ l<cd< p.
Hence in view of (11), we derive the positive definite system of equations
p ~ ~
> AuM)ea=be, 1<c<p. (24)
d=1

8



Since the transpose &f; is the codficient matrix of system (20), its factorization is already available from the
calculation that providef{u)i.q, i € A}.

The following algorithm implements the procedures described in this section for the calculaficandii for
each. B

Algorithm 2 (Determining3 and2 for eachA)

Input: A -

Output: 8, namely the solution of the problem that minimizes (2) subject to the equality constraints (12), and
namely the corresponding Lagrange multipliers that satisfy (11)

Step 1 After replacingD; by M, in (20), solve (20) for eacls € S, and obtain the component8l)iq, | € A}
as follows: ifr is even, then apply band Cholesky factorizatiorMe, and ifr is odd, then apply band LU
factorization toM, .

Step 2 Form (XU)T(XU) and solve (15) fop by Cholesky factorization of{U)"(XU). The required vectgs that
minimizes (2) subject to (12) is obtained by substitutirigto (13). B

Step 3 Determine the Lagrange multipliets; : i € A}, as follows: Ifr is even, then solve (24) fdnr,; : i € A}, by
making use of the Cholesky factors b, already available from Step 1, andrifis odd, then solve (24) by
making use of the LU factors &fl, already available from Step 1. B

Matrix M, appears twice in Algorithm 2. First at Step 1, in generating the basis vectors, and second at Step 3,
in obtaining the Lagrange multipliers. Step 1 obtains the solution of system (20) forsea@in the expense of
O((m - |A) |A| r?) computer operations if is even, where Cholesky factorization is appliedvtg, and inO((m —

\AN) A q(r—d)), whereq = 5, if r is odd, by LU factorization of,. Step 2 require®(m(m-|A()?) operations in order
to form the matrix KU)T (XU) in (15) andO((m - |A|)) operations in order to solve the |Al) x (m— |[Al) system
(15). Step 3 obtains the Lagrange multipliers in o®yA| r) operations, because the factorizatiovhf has already
been carried out at Step 1. Thus the amount of work of Algorithm 2 is of the ordenof- |A|)? + (M — |A) |A| r?
computer operations, when— [A| is a small number.

As mentioned already, a strong reason that favors the calculatiBrbgfmeans of a basis in the linear space
defined by the equality constraints (12) and solving the normal equations (15) is the large siZefipfsatusually
occurs in practice (see numerical results in Section 3). IndeedmmeWwA|, the order of the normal equations, can be
very small, and, although the normal equations can sometimes be ill-conditioned, ill-conditioning in our case is most
unlikely, because all calculations for deriving the mentioned basis are based on positive definite systems. Moreover,
the sparsity feature of the constraint normals promotes the use of LU and Cholesky factorizations, instead of using
orthogonal factorizations.

Further, we elucidate someffiirences between Algorithm 1 and QPROG and QPSOL, which are two broadly
used subroutines for general quadratic programming calculations. QPROG is the implementation of the algorithm of
[16] for convex quadratic programming that was developed by [38] and is provided by IMSL. QPSOL is a general
purpose subroutine for quadratic programming that was developed by [14] and versions of it are in NAG and Matlab.
These subroutines are not aimed at large scale problems; the constraint matrices and thexHiXsaranspecified
in dense storage format and all numbers are calculated by updating techniques that deal with full matrices, whose
storage requirements a@m(m - r)). The total number of multiplications for QPROG in an iteration that makes one
addition to and one deletion from the active set has the value (see [38])

W(QPROG)= m(m- r) + 16n?/3 — 3m|A| + 5|A7 /3
and the corresponding value for QPSOL is (see [14])
W(QPSOL)= m(m-r) + 135n% — 22m|A| + 12|A°.

Because of dferences in the number of iterations to solve a quadratic programming problem, the complexity of
Algorithm 2 and these two expressions provide only a rough guide to the reldiigercies of Algorithm 1 and
9



subroutines QPROG and QPSOL. However, besides the advantage that we deri@rimgrstorage, Algorithm 2,

due to taking account of constraint sparsity and Toeplitz property, requires much less work in order to carry out the
tasks that givaV(QPROG) andNV(QPSOL). So theféciency of Algorithm 1 seems to be quite competent and the
apparent gain over a general quadratic programming algorithm is due to the fact that our method is very suitable for a
large scale calculation.

3. Numerical results

This section presents results from simulation experiments in order to demonstrate the model accuracy and the
performance of Algorithm 1. The data were produced in two steps. First, the vgJties1,2,...,n+ m—- 1 were
chosen to be the daily U.S. Dolf&uro Foreign Exchange Rate derived from the Board of Governors of the Federal
Reserve System for the periogh11999 - 58/2007, which amounts to + m— 1 = 2099 observations. Second, each
of the componentg; : t = mm+1,...,n+m- 1} was generated from (1) after a function vakfe) was substituted
for g; and a number from the uniform distributi&{—0.05, 0.05] was substituted fag, where

B(2) = exp@,z< [0,1] (25)

and
B2 = 1+sin(Z+1)/(1+2),z< 0, 2]. (26)

Function (25) was chosen because it has nonnegative derivatives of all orders and its measurements appear particularly
suitable for fitting with nonnegative flerences. Function (26) is a concganvex function and was chosen to
diversify the final numbers of active constraints, due to the sign changes that occur in its derivatives of all orders. In
this case one may assume that fitting by nonnegatitierdnces is likely to be poor, but the examples below show that
this can be false for > 3, because the set of vectors defined by (4) is strictly larger than the set of points that can be
interpolated by functions with nondecreasing derivatives of ardet (see, [4], [5]). For each of the two underlying
functions, the lag length was chosen= 26,51, 76, 101 and for eacimthe data pointg have equally spaced values.

All the experiments required the calculationgdfy minimizing the objective function (2) subject to the constraints
(9), whiler = 2,3,4 and 5. The actual values i r and the following list of calculated parameters are given in Tables
1 and 2 for the underlying functions (25) and (26) respectively:

m A~
1. Sg =, /2 (B(i) — Bi)?, the distance between the function valpés,i = 1,2,..., mand the estimated lag cie
i=1

cientsg;,i = 1,2,.
2. Prelgrror = max|y. g(i)|/(£n_axyi - 1m_in yi) X 100, the percent relative error of the time series estimation, which
- <i<n <i<n
relates the error to the scale of values taken by the data, wheigetheith column of matrixX.
. |A*|, the number of constraints at final active set.
. The number of active set changes (additions and deletions) required by Algorithm 1 to calculate théicgrise

. The CPU time in seconds for calculating the lagfGoeents.
. Rkt = max|2(X,B y)Tz,f(') Z A(A*)(Dy)ikl, the maximum component of the residuals of the Karush-Kuhn-

o 01T~ W

Tucker (abrev KKT) condmons (11) In view of (11), the quantRyxr is zero in exact arithmetic.

The parameter 1 requires the a-priori knowledge of the underlying function of the |&rwrds, therefore it can
be used only for testing purposes. The parameter 2 is the actual time series smoothing quality indicator that the user
has available at the end of the calculation. The parameters 3, 4 and 5 present the computational performance of the
method. The parameter 6 provides a measure of the accuracy of the computer program that implements the method.
The amount of work of the main iterations of Algorithm 1 can be deduced from the fifth column of Tables 1 and
2. Specifically, because each visit to Step 1 adds a constraint and each visit to Step 3 deletes one, column 5 gives
the total number of occurrences of Steps 1 and 3. Column 7 presents the times to perform the calculations in double
precision arithmetic using the standard Fortran 77 compiler of Compagq Visual Fortran 6.1 on a Personal Computer
with an Intel 2.4 GHz processor operating in Microsoft Windows XP with 32 bits word length. A direct comparison
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of the number of active set changes and CPU time indicates the work required by a single call of Algorithm 2 in order
to calculate the lag cégcients and the corresponding Lagrange multipliers.

In almost all cases presented in Tables 1 and 2, Algorithm 1 terminated in fewemthanactive set changes
(column 5) with a large active set (column 6), while fox 4 the accuracy of the computer program seems to be
very good (column 8). In some cases, the algorithm terminated with no active set changes, because all the final active
constraints were identified at Step 0. The best results for Table 1 were obtained adpesls 3 or 4 and for Table 2
whenr equals 3 or 5, after which the dieient errorS; and the time series error reductiBReieror Start to increase.

For all values ofm, asr increased the value @t decreased. For instance, the refdkt = 1.37E — 02 in

Table 1, obtained whem = 101 andr = 5, shows that the arithmetic for calculating the Lagrange multipliers in this
case is less accurate than wireg 4. The reason is that, as becomes larger (as, for instance, in the cases with
m = 101), the second derivative mat{ X is very ill-conditioned, while the calculation is further aggravated by the
errors in the time series measuremeptdHowever, it is worth mentioning that cancelation errors do not occur when
calculating the ca@icients (10) of scaled higher fiérences (9), as opposed to the case that makes use of general
divided diferences ([37]:p.47).

m r S Prelerror  Active set changes |[A*| CPU time (sec) Rgkr
2 0.0517 0.3463 3 22 0.04 2.42E-09
26 3 0.0338 0.3506 4 22 0.04 1.38E-07
4 0.0571 0.3509 12 19 0.09 3.54E-08
5 0.0752 0.3527 24 20 0.18 1.20E-06
2 0.0393 0.1679 25 44 0.31 1.04E-08
51 3 0.0279 0.1655 52 47 0.60 3.76E-06
4 0.0385 0.1678 41 45 0.59 1.06E-06
5 0.0391 0.1674 83 44 0.89 1.79E-04
2 0.0363 0.1012 43 69 0.85 4.37E-08
76 3 0.0155 0.1000 38 72 0.46 3.07E-05
4 0.0062 0.0969 23 71 0.32 2.15E-06
5 0.0426 0.1025 47 68 0.70 2.78E-03
2 0.0641 0.0673 58 93 1.53 1.55E-07
101 3 0.0104 0.0662 87 94 1.87 3.84E-05
4 0.0078 0.0657 1 96 0.04 5.20E-06
5 0.0117 0.0684 0 96 0.00 1.37E-02

Table 1: Parameters of time series estimation performancefaci@rcy of Algorithm 1, wherB(2) = exp@), z € [0, 1]

4. An example on U.S.A. consumption data and a comparison with the method of Almon

In order to illustrate our method we present an application on real annual macroeconomic data derived from
the Bureau of Economic Analysis of the U.S.A. Department of Commerce for the péfid®29 - ¥1/2006, but
we do not discuss the economic implications of the data or the results. The dependent variable is the Real Personal
Consumption Expenditures (PCE) and the independent variable is the Real Gross Domestic Product (GDP) for U.S.A.,
both measured in billions of chained 2000 dollars. The data of our application are reported in Table 3 and amount to
78 pairs of observations. We assume that a change in the GDHfedt aot only current consumption, but also future
consumption for a number of time periods. Therefore we calculated thiateets of the distributed-lag model with
lag lengthm = 5, 6,7, 8,9 and 10 subject to the constraints (9) on the componemsgfallowingr = 2,3,4 and 5.
In order to compare results, for each valueroive calculated the lag céicients by Almon’s polynomials of degree
k =1,2,3 and 4. Almon'’s cofficients are shown in the thirtk & 1), fourth k = 2), fifth (k = 3) and sixth k = 4)
column of the relevant part of Table 4 for eathwhile ther-convex coéficients are shown in the seventh<£ 2),
eighth ¢ = 3), ninth { = 4) and tenth( = 5) column respectively. Finally, the unconstrained lagfiéccients for
eachm, obtained by minimizing (2), are shown in the last column of Table 4. We see thattresex lag cofficients
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m r S Prelerror  Active set changes |[A*| CPU time (sec) Rgkr
2 0.3966 0.3835 6 22 0.06 3.16E-09
26 3 0.1314 0.3297 12 21 0.10 1.13E-07
4 0.2790 0.3597 0 22 0.00 4.35E-08
5 0.1300 0.3297 13 20 0.12 6.32E-07
2 0.5209 0.2567 28 46 0.39 1.43E-08
51 3 0.0652 0.1714 20 45 0.23 1.66E-06
4 0.3496 0.2277 0 47 0.00 8.45E-07
5 0.0778 0.1711 24 44 0.28 7.95E-05
2 0.6208 0.2437 37 72 0.62 1.41E-08
76 3 0.0633 0.1201 47 71 0.68 1.20E-05
4 0.4184 0.2069 0 72 0.00 1.62E-06
5 0.0938 0.1210 85 69 1.12 1.00E-03
2 0.7054 0.2644 59 93 1.26 3.64E-08
101 3 0.0766 0.0974 90 94 1.42 3.63E-05
4 0.4793 0.2021 0 97 0.00 4.49E-06
5 0.0842 0.0991 113 93 1.94 5.87E-03

Table 2: As in Table 1, byd(z) = 1+ sin(2Z+ 1)/(1 + ),z € [0, 2]

cannot deviate far from the polynomial of degree 1 and, indeed, they do so in a smooth manner alternating above
and below the polynomial curve.

In Figs 5, 6, 7 and 8 we display the unconstrained rteenvex and th&th degree Almon polynomial lag coef-
ficients of Table 4 fom = 8, whiler = 2,3,4 and 5, ank = 1,2, 3 and 4 respectively. The condition number of
the 8x 8 matrixX™X was found by Matlab to be equal to 170080, which exhibits the ill-conditioned character of the
problem. Since the-convex model is a piecewise polynomial, it seems to be more suitable in following the pattern
of the unconstrained lag cfiients, than the corresponding polynomial of(1)th degree. Indeed, in Fig. 5 the
2-convex model is a linear spline with interior knots at the second and fourth data point as opposed to Almon'’s straight
line model. In Fig. 6 the 3-convex model coincides with Almon’s 2nd degree polynomial, because all the constraints
(9) are satisfied as equalities. In Fig. 7 the 4-convex model contains two overlapping cubics and is obtained by mini-
mizing (2) subject to the equality constraits— 465 + 684 — 483 + 82 = 0 andB7 — 4B + 685 — 484 + B3 = 0. In Fig.
8 the 5-convex model contains just one quartic and is obtained by minimizing (2) subject to the equality constraint
—B7 + 566 — 135 + 1084 — 583 + B2 = 0. Moreover, a standard result from sensitivity analysis is that if a Lagrange
multiplier is large, then the optimal valu&(3) is sensitive to the perturbation of the corresponding constraint, while
if a Lagrange multiplier is small, the dependence is much weaker. Thus, the larger the multiplier, the stronger the
dependence upon the corresponding constraint. The following table indicates these dependencies by reporting the
Lagrange multipliers for each case (the zero Lagrange multipliers correspond to non-active constraints).

r=2 r=3 r=4 r=5
A1 0.00 95836.10 0.00 0.00
A 177947 217696.21 830.12 438.44
A3 0.00 265146.41 90.66 0.00

Aa  22643.45 187651.75 0.00
As 2674457  65369.76
de 10783.24

5. Conclusions

We have developed a new method for calculating distributed-lafficeats in time series estimation subject to
the condition that theth consecutive dierences of then codficient estimates are nonnegative, which may well be
12



GDP PCE GDP PCE GDP PCE

865.2 6614 2212.8 13855 5291.7 3422.2
790.7 626.1 2255.8 14254 5189.3 3470.3
739.9 606.9 2301.1 1460.7 5423.8 3668.6
643.7 553.0 2279.2 14723 5813.6 3863.3
635.5 541.0 24413 15546 6053.7 4064.0
704.2 579.3 2501.8 1597.4 6263.6 4228.9
766.9 614.8 2560.0 1630.3 6475.1 4369.8
866.6 677.0 2715.2 17111 6742.7 4546.9
9111 702.0 2834.0 17816 6981.4 4675.0
879.7 690.7 2998.6 1888.4 71125 4770.3
950.7 729.1 3191.1 2007.7 7100.5 4778.4
1034.1 767.1 3399.1 2121.8 7336.6 4934.8
1211.1 8219 3484.6 2185.0 7532.7 5099.8
1435.4 803.1 3652.7 2310.5 78355 5290.7
16709 826.1 37654 2396.4 8031.7 54335
1806.5 850.2 37719 24519 83289 56194
1786.3 902.7 3898.6 25455 8703.5 5831.8
1589.4 10129 4105.0 2701.3 9066.9 6125.8
15745 1031.6 43415 2833.8 9470.3 6438.6
1643.2 1054.4 4319.6 28123 9817.0 6739.4
1634.6 1083.5 4311.2 2876.9 9890.7 6910.4
1777.3 1152.8 4540.9 3035.5 10048.8 7099.3
1915.0 1171.2 4750.5 3164.1 10301.0 7295.3
1988.3 1208.2 5015.0 3303.1 10703.5 7577.1
2079.5 1265.7 5173.4 3383.4 11048.6 7841.2
2065.4 12914 5161.7 3374.1 114153 8091.4

Table 3: The values of GDP and PCE for the years 1929-2006 (U.S.A. Department of Commerce)

04 —

03 —

0.4
\ \ \ \

0 2 4 6 8

Figure 5: The unconstrained), ther-convex (0) and th&th degree Almon polynomiaky) lag coeficients of Table 4, whem = 8,r = 2 and
k=1

applied for the case where thdfdrences are non-positive.
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Almon’s  codfs r-convex Cofs unconstrained
m B k=1 k=2 k=3 k=4 r=2 r=3 r=4 r=5 lag codficients
Bo 0.1751 0.3955 0.3383 0.3572 0.3347 0.3828 0.3828
p1 0.1593 0.0474 0.1344 0.0848 0.1226  0.0014 0.0014
5 pB, 0.1434 -0.0787 -0.0786 -0.0171 -0.0316 0.0984 0.0984
Bz 0.1276 0.0172 -0.0693 -0.1190 -0.1280 -0.2024 -0.2024
B4 0.1118 0.3352 0.3936 0.4125 0.4211 0.4380 0.4380
Bo 0.1399 0.3119 0.2900 0.3214 0.3174 0.2476  0.3272 0.3759 0.3346
p1 0.1325 0.0974 0.1191 0.0490 0.0622  0.1409 0.0441 -0.1532 0.0074
6 pB, 0.1252 -0.0134 -0.0003 0.0385 0.0286  0.0445 0.0310 0.2955 0.1044
Bz 0.1178 -0.0205 -0.0334 0.0050 -0.0050 -0.0415 0.0142 -0.1602 -0.0613
Bs 0.1105 0.0762 0.0547 -0.0159 0.0048 -0.0107 -0.0152 0.0741 0.0263
Bs 0.1031 0.2766 0.2990 0.3312 0.3210 0.3508 0.3278 0.2974 0.3176
po 0.1219 0.2452 0.2807 0.3099 0.3135 0.2271 0.3198 0.3097 0.3283
p1 0.1165 0.1158 0.0923 0.0436 0.0326 0.1364 0.0266 0.0441 -0.0157
B> 0.1110 0.0360 0.0102 0.0121 0.0296 0.0683 0.0197 0.0117 0.1060
7 pBs 0.1056 0.0060 0.0059 0.0407 0.0267 0.0228 0.0389 0.0405 -0.0544
B4 0.1002 0.0258 0.0513 0.0525 0.0522  0.0257 0.0587 0.0534 0.1163
ps 0.0948 0.0953 0.1181 0.0689 0.0777  0.0769 0.0608 0.0680 0.0411
Bs 0.0894 0.2146 0.1780 0.2089 0.2041 0.1764 0.2120 0.2092 0.2147
Bo 0.1152 0.1963 0.2691 0.2964 0.3097 0.1963 0.3021 0.3030 0.3105
p1 0.1089 0.1194 0.0886 0.0530 0.0177 0.1194 0.0418 0.0430 0.0037
B2 0.1027 0.0663 0.0149 0.0033 0.0301 0.0663 0.0114 0.0039 0.0862
8 Bz 0.0965 0.0369 0.0147 0.0344 0.0425 0.0369 0.0305 0.0408 -0.0455
B4 0.0903 0.0313 0.0544 0.0736 0.0596 0.0313 0.0682 0.0632 0.1112
ps 0.0841 0.0493 0.1006 0.0877 0.0768 0.0493 0.1057 0.1033 0.0915
Be 0.0779 0.0911 0.1199 0.0839 0.0939 0.0911 0.0643 0.0678 0.0707
Bz 0.0717 0.1567 0.0787 0.1090 0.1110 0.1567 0.1171 0.1161 0.1127
Bo 0.1114 0.1646 0.2321 0.3001 0.2778 0.1646  0.2795 0.2795 0.2961
p1 0.1045 0.1167 0.1001 0.0309 0.0343 0.1167 0.0619 0.0619 -0.0085
B> 0.0976 0.0807 0.0378 -0.0062 0.0413 0.0807 -0.0055 -0.0055 0.1159
Bz 0.0907 0.0565 0.0258 0.0458 0.0483 0.0565 0.0204 0.0204 -0.0848
9 pB4 0.0838 0.0442 0.0447 0.0935 0.0553  0.0442 0.0828 0.0828 0.1330
Bs 0.0769 0.0438 0.075 0.0933 0.0623 0.0438 0.1250 0.1250 0.0824
Be 0.0700 0.0553 0.0975 0.0513 0.0692 0.0553 0.0901 0.0901 0.1649
Bz 0.0631 0.0787 0.0927 0.0234 0.0762 0.0787 -0.0785 -0.0785 -0.1513
pg 0.0562 0.1140 0.0413 0.1151 0.0832 0.1140 0.1732 0.1732 0.2013
Bo 0.1050 0.1477 0.1817 0.3093 0.2357 0.1334 0.2911 0.2748 0.2975
p1 0.0986 0.1118 0.1079 0.0071 0.0557 0.1093 -0.0053 0.0526 -0.0308
B> 0.0922 0.0835 0.0644 -0.0279 0.0540 0.0885 0.0430 -0.0092 0.0970
Bz 0.0858 0.0626  0.0447 0.0430 0.0523 0.0712 0.0384 0.0096 -0.0404
10 B4 0.0794 0.0492 0.0422 0.1103 0.0506 0.0572 -0.0048 0.0616 0.0737
Bs 0.0730 0.0434 0.0504 0.1166 0.0489  0.0467 0.1585 0.1318 0.1120
Be 0.0667 0.0450 0.0627 0.0561 0.0472 0.0395 0.1392 0.1313 0.1583
Bz 0.0603 0.0542 0.0726 -0.0248 0.0455 0.0358 -0.0033 0.0040 -0.0173
Bg 0.0539 0.0708 0.0734 -0.0280 0.0438 0.0355 -0.2098 -0.2061 -0.1963
B 0.0475 0.0949 0.0586 0.1967 0.1263  0.1494 0.3145 0.3113 0.3077

Table 4: Almon's k=1, 2, 3, 4),r-convex ¢ = 2, 3, 4, 5) and the unconstrained lag fiméents form =5, 6,7, 8,9, 10
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Figure 6: Asin Fig. 5, but = 3 andk = 2
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Figure 7: Asin Fig. 5, but = 4 andk = 3

The method is a strictly convex quadratic programming algorithm that takes account of the least squares objective
function and the fact that each of the constraint functions depends orr anly adjacent components of the lag
codficients that give a Toeplitz structure. We have develof@dient procedures for the solution of the equality
constrained minimization problem and the calculation of the corresponding Lagrange multipliers that occur during the
active set revisions of the quadratic programming iterations. Specifically, we have considered a particularly convenient
basis{u, : se S}inthe linear space of active constraint gradients, where the definitiSriaites account of the non-
active constraints, and we worked with reduced quantities throughout the calculation. Four advantages were gained.
One is that the number of variables that occurs in practice for our calculation is much lowan;thla@ original
number of variables. The second is that the active constraints are satisfied automatically due to the choice of the basis.
The third is that the calculation of the basis depends on a positive definite subsystem of equations derived from the
active constraints, where positive definiteness comes from the Toeplitz structure. The fourth is that the matrix that
occurs in the calculation of the Lagrange multipliers is the transpose of the matrix of the subsystem that was already
used for obtainingu, : s € S}. Therefore, a factorization of this matrix is available and the Lagrange multipliers
can be found only by a small amount of extra work after the basis elements are calculated. The particular choice of
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{u, : se S}isalsoimportantin its own right, because it provides a basis for the linear space of piecewise polynomials
that are defined by thefiierence equationsgﬂ =0, j € A. This choice provides a major computing saving, because
although the size of the active sets that are carried out during the calculation is usually quite alose {@hich

is the number of constraints of the quadratic programming problem), we solve arlyabout) systems, whereis

a small number in practice. Moreover, the calculation is stable, because all theienematrices of the mentioned
subsystems of equations are positive definite.

The question arises of a suitable choice of general. If there exists appropriate prior information to be taken into
account, then our method may have advantages. If the right choicis af matter of experimentation, the user may
try iteratively some values of while simultaneously keep checking adjacent values of the paranﬁe{ﬁ;c?Re.Ermr
andRkkr. If each parameter possesses approximately the same value for successivle Rqyr is sufficiently
small, then these values oare most likely to provide adequate choices. Instead, a model underfit is usually indicated
by a largePreierror and smallRkk T, where the latter indicates accurate termination and the former large deviations
of the estimated components. Furthermore, if for some valuestbe parameterE([S) and Preierror take isolated
values, whileRgkT is large, then the user should be suspicious of inaccuracies due to rfufai-the reasons given
in Section 3.

The proposed method seems to be a useful one for distributed-lag estimation, which is at least more general and
comparably more competent than Almon’s polynomial family method. The connection with Almon polynomial is that
this polynomial satisfies all outh difference inequality constraints as equalities, so the Almon lalicieats lie on
a polynomial of degree — 1. Our model, as a piecewise polynomial, is much more successful in practice, because
it allows that number of overlapping polynomial pieces of degree 1, whichthe quadratic programming method
automatically provides.

Three modeling advantages of using the new method are that it achieves a rather weak representation of the lag
codficients, which is highly desirable in lag estimation practices, it obtains well recognized structures due to prior
knowledge of the-convexity property and it provides estimatesrtf derivative values of the underlying relation.

The Fortran program we have developed for tremnvex model required indeed a good deal fiét and hopefully
it would be very helpful for empirical analyses and applications to real problems. Since no assumption is made about
the nature of an underlying relation, it is also indicated that this method may be of general use.

References

[1] Almon, S., 1965. The Distributed Lag between Capital Appropriations and Expendia@sometrica33(1), 178-196.
[2] Bunch, J. R., 1985. Stability of Methods for Solving Toeplitz Systems of EquatBiAd4 J. Sci. Stat. Com®B, 349-364.

16



(3]
(4]
(5]
(6]
(7]
(8]

El
(10]
[11]
(12]
(13]
[14]

[15]
(16]

[17]
(18]

[19]
[20]
(21]
(22]

(23]
[24]
(25]

(26]

[27]
(28]
[29]
(30]
[31]
(32]
(33]
[34]
(35]
(36]
[37]
(38]
[39]
[40]
[41]
[42]
(43]
[44]
[45]

Corradi, C., 1977. Smooth Distributed Lag Estimators and Smoothing Spline Functions in Hilbert Spacesl. of Econometri¢s, 211-
219.

Cullinan, M. P., 1990. Data smoothing using non-negative dividé@rginces and2 approximationIMA J. of Numerical Analysijs10,
583-608.

Cullinan, M. P. & Powell, M. J. D., 1982. Data smoothing by divideffetiences. In:Numerical Analysis Proc. Dundee 1984d. G. A.
Watson), LNIM 912, Berlin: Springer-Verlag, 26-37.

Demetriou, I. C., 1995. Algorithm 742: L2CXFT: A Fortran subroutine for least squares data fitting with non-negative second divided
differencesACM Trans. on Math. Softwar&1(1), 98-110.

Demetriou, I. C. & Lipitakis, E. A., 2001. Certain positive definite submatrices that arise from binomfatsre matricesApplied Numer-
ical Mathematics36, 219-229.

Demetriou, I. C. & Powell, M. J. D., 1991. The minimum sum of squares change to univariate data that gives caMaxityf Numerical
Analysis 11, 433-448.

Fisher, I., 1937. Note on a Short-Cut Method for Calculating Distributed Lagsnational Statistical Institute Bulletjr823-327.

Fomby, T. B., Hill, R. C. & Johnson, S. R., 1984dvanced Econometric Methqd$ew York: Springer.

Fletcher, R., 200Fractical Methods of Optimization, Second Editi@hichester: J. Wiley and Sons.

Gershenfeld, N., 1999 he Nature of Mathematical Modellin@ambridge: Cambridge University Press.

Gill, P. E. & Murray, W., 1978. Numerically stable methods for quadratic programrMagh. Programming14, 349-372.

Gill, P. E., Murray, W., Saunders, M. A. & Wright, M. H., 1983. User’s guide for 3QRSOL: a Fortan package for quadratic programming.
Report SOL 83-7, Stanford University.

Gujarati, D., 2003Basic Econometrics, Fourth Editiobondon: McGraw-Hill Book Co.

Goldfarb, D. & Idnani, A., 1983. A numerically stable dual method for solving strictly convex quadratic prodviatiis.Programming27,
1-33.

Golub, G. & van Loan, C. F., 1988/atrix Computations, Second EditioBaltimore and London: The John Hopkins University Press.
Gray, R. M., 2006.Toeplitz and Circulant Matrices: A RevievBtanford: Department of Engineering, httpe.stanford.egugray
toeplitz.pdf.

Griliches, Z., 1967. Distributed Lags: A Survé&conometrica35(1), 16-49.

Groetch, C. W., 1993nverse Problems in the Mathematical Scien&sunschchweig: Vieweg.

Hannan, E. J., 1965. The Estimation of Relations Involving Distributed LEBgmometrica33(1), 206-224.

Harezlak, J., Coull, B. A., Laird, N. M., Magari, S. R. & Christiani, D. C. 2007. Penalized solutions to functional regression problems.
Computational Statistics and Data Analysid (10), 4911-4925.

Hildebrand, F. B., 1974ntroduction to Numerical Analysj$Second Edition. New York: Dover Publication, Inc.

Jorgenson, D., 1966. Rational Distributed Lag Functi@manometrica34(1), 135-149.

Jorgenson, D. W. & Kun-Young Yun, 200lvestment, Volume 3 Lifting the Burden: Tax Reform, the Cost of Capital, and U.S. Economic
Growth Cambrdige, Mass: The MIT Press.

Kailath, T. (editor), 1977Linear Least-Squares EstimatioStroudsburg, Pennsylvania: Dowden, Hutchinson and Ross, Inc., Benchmark
Papers in Electrical Engineering and Computer Science, 17.

Karlin, S., 1968Total Positivity Volume 1. Stanford, California: Stanford University Press.

Koop, G., 2000Analysis of Economic Dat&hichester: J. Wiley and Sons.

Koyck, L., 1954 .Distributed Lags and Investment Analystensterdam: North-Holand Pub. Co.

Lawson, C. L. & Hanson, R. J., 199Solving Least Squares Problenfhiladelphia: SIAM Publications.

DeLeeuw, F., 1962. The Demand for Capital Goods by Manufactures: A Study of Quarterly Time Beoiesmetrica30, 407-423.

Liew, C. K., 1976. Inequality Constrained Least-Squares Estimdtiofithe American Statistical Associatjofl, 746-751.

Maddala, G. S., 197 EconometricsLondon: McGraw-Hill Book Co.

Ng, M. T., 2004 Iterative Methods for Toeplitz Systen@xford: Oxford University Press.

Nocedal, J. & Wright, S. J., 1998lumerical OptimizationNew York: Springer.

Polasek, W., 1990 Vector distributed lag models with smoothness p@orsputational Statistics and Data Analysi®(2), 133-141.
Powell, M. J. D., 1981Approximation Theory and MethadSambridge: Cambridge University Press.

Powell, M. J. D., 1985. On the quadratic programming algorithm of Goldfarb and |dvdatf. Programming Studie&5, 46-61.
Robertson, T., Wright, F. T. & Dykstra, R. L., 1988rder Restricted Statistical Inferendghichester: J. Wiley and Sons.

SAS User Guide, 2008. SAS Institute Inc. hitwww.sas.confsoftwarg, 100 SAS Campus Drive Cary, NC 27513-2414 USA.

Shiller, R. J., 1973. A Distributed Lag Estimator Derived from Smothness PEomometrica41(4), 775-788.

Solow, R. M., 1960. On a Family of Lag DistributiorlSconometrica28(2), 393-406.

Tikhonov, A. N., 1977 Solutions for lll-posed Problem$Vashington: Winston and Sons.

Tsay, R. S., 2002Analysis of Financial Time Seriellew York: J. Wiley and Sons.

Vogel, C. R., 2003Computational Methods for Inverse ProblerR$iiladelphia: SIAM FR23.

17



