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Abstract. Consistent goodness-of-fit tests are proposed for multivariate Laplace distri-

butions of arbitrary dimension. The test statistics are formulated following the Fourier–type

approach of measuring the discrepancy between the empirical and the theoretical character-

istic function, and result in computationally convenient representations. In the symmetric

case interesting limit values are obtained which are related to well known measures of mul-

tivariate skewness and kurtosis. A Monte Carlo study is conducted in order to compare the

new procedures with standard tests based on the empirical distribution function. A real data

application is also included.
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1 Introduction

Testing goodness–of–fit of a given set of observations to a specific probabilistic model

is a crucial aspect of data analysis. This problem has received wide attention in the

univariate setting, but when handling multivariate data it appears that there is a lack

of methods for distributions other than the normal. On the other hand, researchers

in various fields have questioned the appropriateness of the Gaussian distribution in

modeling certain empirical data which often exhibit skewness and tails heavier than

those expected under the Gaussian assumption. An alternative probabilist model which

has been popular lately is the multivariate Laplace distribution of Kotz et al. (2001).

This model, and extensions thereof, was found appropriate for financial, biological and

engineering data; see Kotz et al. (2001), Kozubowski and Podgórski (2001), Lindsey

and Lindsey (2006), Eltoft et al. (2006), and Rossi and Spazzini (2010).

For univariate data there are standard goodness–of–fit tests which utilize the em-

pirical distribution function (EDF). Due to the lack of proper ordering of vectors how-

ever, it is well known that these tests can not be generalized to handle multivariate

observations in a straightdforward manner; refer to Justel et al. (1997) and Chiu and

Liu (2009). The Gaussian case has nevertheless received considerable attention and

several methods for goodness–of–fit testing have been devised that are particularly

tailored for multinormality; see for instance, Kankainen et al. (2007), Liang and Ng

(2009), Villasenor Alva and Estrada (2009), and Sürücü (2009).

In this paper we extend to the multivariate case the approach in Meintanis (2004)

and propose a goodness–of–fit test for the composite null hypothesis of a multivariate

Laplace distribution (MLD). We shall consider the symmetric case first. To fix notation

let X be a random vector of dimension d ≥ 1, and write φ(t) := E(eit′X), t ∈ R
d, for

the characteristic function (CF) of X. The CF of the MLD is given by

ϕ(t) := ϕ(t; δ,Σ) =
eit′δ

1 + 1
2
t′Σt

,(1.1)

where δ ∈ R
d and Σ ∈ Md denotes a scale matrix which belongs to the set Md of

positive definite matrices of order d×d. We shall write X ∼ ML(δ,Σ) when X follows

a MLD with CF given by (1.1). On the basis of independent observations X1, . . . ,Xn
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on X we wish to test the null hypothesis

H0: X ∼ ML(δ,Σ), for some δ ∈ R
d and some Σ ∈ Md,

against general alternatives. Since the family of MLD is closed under full rank affine

transformations we shall consider test statistics which involve the standardized data

Zj := Σ̂
−1/2

n (Xj − δ̂n), j = 1, . . . , n,

where (δ̂n, Σ̂n) denote consistent estimators of (δ,Σ). Under the null hypothesis H0,

the data Zj, j = 1, . . . , n, are for large n approximately distributed as ML(0d, Id) with

0d and Id denoting the zero vector, and the identity matrix, respectively.

In view of (1.1) we suggest the test statistic

Tn,W = n

∫

Rd

∣∣∣∣ϕn(t)

(
1 +

1

2
t′t

)
− 1

∣∣∣∣
2

W (t)dt,(1.2)

where ϕn(t) = n−1
∑n

j=1 eit′Zj is the empirical CF computed from the standardized

observations Zj, j = 1, . . . , n, and W (·) denotes a weight functions which is introduced

in order to smooth out the periodic parts of ϕn(t).

The rest of the paper is organized as follows. In Section 2 we discuss some com-

putational aspects of the test statistics while Section 3 deals with the problem of esti-

mation of parameters and the consistency of the test, while in Section 4 limit statistics

are obtained and their moment connections are discussed. The finite–sample behavior

of the proposed method compared to other procedures is studied by means of Monte

Carlo in Section 5. Finally Section 6 is devoted to extension of the test statistic to the

asymmetric case and to application with real data.

2 Computation of test statistic

In order to compute the test statistic, first write eqn. (1.2) as

Tn,W = n

∫

Rd

|Dn(t)|2 W (t)dt,(2.1)

where

Dn(t) = ϕn(t)

(
1 +

1

2
‖t‖2

)
− 1,
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and notice that

|Dn(t)|2 = |ϕn(t)|2
(

1 +
1

2
‖t‖2

)2

+ 1 − 2

(
1 +

1

2
‖t‖2

)
Cn(t),

where |ϕn(t)|2 = C2
n(t) + S2

n(t) and Cn(·) and Sn(·) denote the real and the imaginary

part of the empirical CF, respectively. Upon writing

Cn(t) =
1

n

n∑

j=1

cos(t′Zj) and |ϕn(t)|2 =
1

n2

n∑

j,k=1

cos(t′(Zj − Zk))

and by some extra algebra the test statistic is rendered in the convenient form

Tn,W =
1

n

n∑

j,k=1

{
I1(Zjk) + I2(Zjk) +

1

4
I3(Zjk)

}
(2.2)

+nI1(0d) −
n∑

j=1

{2I1(Zj) + I2(Zj)} ,

where Zjk = Zj − Zk and

Im(x) =

∫

Rd

(t′t)m−1 cos(t′x)W (t)dt, m = 1, 2, 3.

A simple closed formula for the statistic in (2.2) may be obtained if we set W (t) =

e−a‖t‖2

, a > 0, by using the well known integral
∫

Rd

cos(t′x)e−a‖t‖2

dt =
(π

a

)d/2

e−‖x‖2/4a := Na(x).(2.3)

In particular, successive differentiation of (2.3) with respect to a, yields after some

tedious but straightforward algebra,
∫

Rd

(t′t) cos(t′x)e−a‖t‖2

dt =
1

4a2
∆a(x)Na(x)

and
∫

Rd

(t′t)
2
cos(t′x)e−a‖t‖2

dt =
1

16a4

(
8a∆a(x) + ∆2

a(x) − 8a2d
)
Na(x),

where ∆a(x) = (2ad − ‖x‖2). Then with weight function e−a‖t‖2

the test statistic in

(2.2), say Tn,a, admits the following representation

Tn,a = nNa(0d) −
1

4a2

n∑

j=1

Na(Zj)
{
∆a(Zj) + 8a2

}
(2.4)
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+
1

64a4n

n∑

j,k=1

Na(Zjk)
{[

∆a(Zjk) + 4a + 8a2
]2 − 8a2(8a + d + 2)

}
,

which is suitable for computer implementation. Notice also that since Tn,a depends

solely on ‖ · ‖2, not even the computation of the square root of Σ̂
−1

n is required in

(2.4). Other weight functions are also possible. In particular assume that W (·) may

be decomposed into a product as W (t) =
∏d

m=1 w(tm) (tm, m = 1, ..., d, being the

elements of t), where the function w(·) satisfies w(t) = w(−t), t ∈ R, and
∫

t4w(t)dt <

∞. Then the test statistic in (1.2) can be written in closed form provided that the

integral
∫

tmw(t)dt, m = 0, 2, 4, is explicit. Such a weight function results for instance

by letting w(t) = e−a|t|, a > 0, but then the desirable feature of Tn,W being dependent

solely on ‖ · ‖2 is lost. For more details see Meintanis and Iliopoulos (2008).

3 Estimation of parameters and consistency

The test statistic in (1.2) involves the standardized data Zj, j = 1, . . . , n, which in

turn depend on estimates (δ̂n, Σ̂n) of the parameters (δ,Σ). We shall use the classical

moment estimates. Specifically if X ∼ ML(δ,Σ), it may be shown that

E(X) = δ, and E [(X− δ)(X − δ)′] = Σ.

Hence the moment estimates are given by the simple sample mean and the sample

covariance matrix, respectively,

δ̂n = Xn and Σ̂n = Sn,(3.1)

where Sn = n−1
∑n

j=1(Xj − Xn)(Xj − Xn)′. These estimates enjoy the properties

δ̂n(Y1, . . . ,Yn) = Aδ̂n(X1, . . . ,Xn) + β

and

Σ̂n(Y1, . . . ,Yn) = AΣ̂n(X1, . . . ,Xn)A′,

where β ∈ R
d and A denotes a nonsingular matrix of order d × d. This feature

combined with the fact that in eqn. (2.4) only ‖ · ‖2 appears, renders the test statistic

affine invariant, i.e., Tn,a satisfies

Tn,a(Y1, . . . ,Yn) = Tn,a(X1, . . . ,Xn),
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for each transformation of the type Xj 7→ Yj = AXj + β, j = 1, ..., n. Due to this

property of the test statistic, in the simulations only the standard case ML(0d, Id) needs

to be considered.

We now turn to the consistency of the test in eqn. (1.2) implement by using the

moment estimators.

Theorem 3.1 Let X be a random vector with mean E(X) = µ which possesses a

non–singular covariance matrix C, and assume that the weight function satisfies

∫

Rd

‖t‖4W (t)dt < ∞.

Then as n → ∞,

Tn,W

n
→
∫

Rd

∣∣∣∣e
−it′C−1/2µ φ

(
C−1/2t

)(
1 +

1

2
‖t‖2

)
− 1

∣∣∣∣
2

W (t)dt := ∆W ,(3.2)

almost surely.

Proof. From (2.1) we have

Tn,W

n
=

∫

Rd

|Dn(t)|2 W (t)dt,(3.3)

and notice that clearly

|Dn(t)|2 ≤
(

2 +
1

2
‖t‖2

)2

.(3.4)

Also from the uniform consistency of the empirical CF ( see Csörgő, 1981, and Ushakov,

1999, §3.2, and p. 244) we have that

ϕn(t) = e−it′S
−1/2

n Xn︸ ︷︷ ︸
(1)

1

n

n∑

j=1

eit′S
−1/2

n Xj

︸ ︷︷ ︸
(2)

→ e−it′C−1/2µ

︸ ︷︷ ︸
(1)

φ
(
C−1/2t

)
︸ ︷︷ ︸

(2)

,(3.5)

almost surely as n → ∞. Now (3.2) follows by (3.3), (3.4) and (3.5), with an application

of Lebesque’s theorem of dominated convergence.

By changing variables in the integral figuring in the right–hand side of (3.2) one

obtains

∆W = det(C1/2)

∫

Rd

∣∣∣∣φ(u)

(
1 +

1

2
u′Cu

)
− eiu′µ

∣∣∣∣
2

W (C1/2u)du.
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It is clear that the last integral is positive unless H0 holds with (δ,Σ) replaced by

(µ,C), which implies that the test which rejects the null hypothesis H0 for large values

of the test statistic Tn,W is consistent against each alternative satisfying the assump-

tions of Theorem 3.1.

4 Connection with moment–type statistics

Consider the test statistic in (2.4) where the parameter–estimates are given by eqn.

(3.1). By use of the expansion ex = 1 + x + (x2/2!) + (x3/3!) + ... in the exponential

terms of (2.4) we obtain

(a

π

)d/2

Tn,a =
1

4a
A1 +

1

42a2
A2 +

1

43a3
A3 + o

(
1

a3

)
, a → ∞,(4.1)

where Am, m = 1, 2, 3, are obtained after some straightforward algebra as

A1 = 2

n∑

j=1

‖Zj‖2 − 1

n

n∑

j,k=1

‖Zjk‖2,

A2 =
1

2n

n∑

j,k=1

‖Zjk‖4 −
n∑

j=1

‖Zj‖4 − (d + 2)

(
2

n

n∑

j,k=1

‖Zjk‖2 − nd − 2

n∑

j=1

‖Zj‖2

)
,

A3 =
1

3

n∑

j=1

‖Zj‖6 − 1

6n

n∑

j,k=1

‖Zjk‖6

+ (d + 4)

(
1

n

n∑

j,k=1

‖Zjk‖4 − (d + 2)

n

n∑

j,k=1

‖Zjk‖2 −
n∑

j=1

‖Zj‖4

)
.

Now notice that due to standardization we have (see also Henze, 1997)

n∑

j,k=1

Z′
jZk = 0,

n∑

j,k=1

(
Z′

jZk

)2
= n2d

and
n∑

j,k=1

‖Zjk‖2 = 2n2d,

n∑

j=1

‖Zj‖2 = nd.

These relations and some tedious but straightforward algebra yield Am = 0, m = 1, 2,

and

A3 =
1

3

n∑

j=1

‖Zj‖6 − 1

6n

n∑

j,k=1

‖Zjk‖6 + (d + 4)
n∑

j=1

‖Zj‖4.(4.2)
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Compute now

1

n

n∑

j,k=1

‖Zjk‖6 = −8nb1,d − 12nb̃1,d + 6(d + 4)
n∑

j=1

‖Zj‖4 + 2
n∑

j=1

‖Zj‖6,

where

b1,d =
1

n2

n∑

j,k=1

(
Z′

jZk

)3

b̃1,d =
1

n2

n∑

j,k=1

Z′
jZk‖Zj‖2‖Zk‖2,

and substitute this expression in (4.2) to finally obtain from (4.1)

lim
a→∞

a(d/2)+3 Tn,a =
πd/2

8
n

(
1

6
b1,d +

1

4
b̃1,d

)
:= Tn,∞.(4.3)

There is an interesting connection of the limit value in eqn. (4.3) with standard

measures of multivariate skewness and kurtosis. In particular Tn,∞ contains the mea-

sures of skewness b1,d introduced by Mardia (1970). Moreover Tn,∞ coincides, apart

from scaling and normalization, with the statistic obtained by Henze (1997) in the

context of testing multivariate normality. Hence this limit value may be considered as

a test statistic of its own and in fact, under general conditions, Tn,∞ attains a standard

asymptotic distribution. Specifically by using Theorem 2.2 of Henze (1997) it follows

that under the null hypothesis of a MLD, and as n → ∞,

n

(
1

6
b1,d +

1

4
b̃1,d

)
→ γ1Y1 + γ2Y2,(4.4)

in distribution, where Y1 and Y2 are independent chi–squared distributed r.v.’s, with

degrees of freedom d and d(d−1)(d+4)/6, respectively. The coefficients γm, m = 1, 2,

figuring in (4.4) can be computed from the moments of the MLD as

γ1 =
3(d + 4)[11d(d − 2) + 32]

4(d + 2)
, γ2 =

18(2d2 − 3d + 6)

(d + 2)(d + 4)
.(4.5)

From (4.4) and (4.5), it follows that an asymptotic test statistic for the null hypothesis

H0 can be based on Tn,∞. However, as it has already been pointed out, this statistic

unlike Tn,a, a > 0, is not universally consistent, and in particular it should have low

power against multivariate normal alternatives, and more generally against any non–

Laplacian spherically symmetric distribution.
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5 Simulations

In this section we study the finite–sample performance of the test Tn,a in eqn. (2.4),

implemented via with moment estimates in eqn. (3.1). For simplicity we shall refer

to this test statistic as Ta. The limit statistic Tn,∞ (T∞ for simplicity) will also be

simulated. In particular, and since we found that the Tn,∞ test when implemented as

an asymptotic test via (4.4)–(4.5) does not respect the nominal level of significance to

a satisfactory degree, we decided to also run this test as a Monte Carlo test, with both

an upper tail as well as a two–tail rejection region. In fact it should be mentioned that

a two–tailed test has better performance than the corresponding one–sided tests.

The simulation study is based on 10,000 samples of size n = 50 and n = 100

from several bivariate distributions (d = 2). These distributions are: The standard

Laplace, the standard normal (N), Student’s t–distribution with varying degrees of

freedom, the skew–normal distribution, and a mixture of the standard Laplace with the

standard normal distribution, in varying proportions. For the standard normal which

is a building block for simulating random numbers following the other distributions

we employed the IMSL routine DRNMVN. Then, given that the vector X follows a

standard normal distribution, deviates Y for the other distributions are simulated as

• Standard Laplace: YL =
√

wX.

• Standard Skew Normal: YSN = λ|z|1d +
√

1 − λ2X denoted as SN(λ).

• Student’s tm : Ym =
(√

S
m

)−1

X denoted as t(m).

• Laplace - Normal mixture: YLN = pYL + (1 − p)X denoted as LN(p).

with w following a standard exponential distribution, z following a standard normal

distribution, S following a χ2
m distribution and p ∈ (0, 1).

For comparison purposes, we have also included the multivariate extension of

the Kolmogorov–Smirnov test suggested by Justel et al. (1997). Given a sample

X1, . . . ,Xn, with distribution function F (x), the Kolmogorov–Smirnov (KS) statistic

for the hypothesis H0 : F = F0 against H1 : F 6= F0 is given by

Dn = sup
x∈Rd

|Fn(x) − F0(x)|,(5.1)
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where Fn(x) is the corresponding EDF. The main drawbacks of KS in the multivariate

setup are that Dn is computationally intensive and that it is not distribution free. On

the other hand Rosenblatt (1952) proposed the following transformation U = T0(X)

of a random vector X = (X1, X2, ..., Xd)
′:

U1 = F01(X1)

Ui = F0i(Xi|X1, . . . , Xi−1), i = 2, . . . , d,(5.2)

where F01(·) and F0i(·|·), i = 2, ..., d, denote the marginal and the conditionals corre-

sponding to F0, respectively. It may be shown that, under the null hypothesis H0, the

random vector U := (U1, ..., Ud)
′ is uniformly distributed on (0, 1)d and, therefore, a

test of H0 may be based on the statistic:

dn = sup
u∈(0,1)d

|Gn(u) − u1 · · ·ud|,(5.3)

where Gn(u) is the EDF of the transformed sample U1, . . . ,Un. Justel et al. (1997)

further extend this approach and propose to consider all possible permutations of the

coordinates and to define the multivariate Kolmogorov–Smirnov statistic as

DKS
n = max

j
dj

n,(5.4)

where dj
n is the statistic (5.3) in which the transformed variables Uj are defined by (5.2)

with the ordering of the variables Xi, i = 1, . . . , d, permuted according to the j-th

permutation, i.e.,

dj
n = sup

u∈(0,1)d

|Gj
n(u) − u1 · · ·ud| for j = 1, . . . , d!,(5.5)

where Gj
n(u) is the empirical distribution function of the transformed sample U

j
1, . . . ,U

j
n.

In the following simulation study, we will use the approximate Kolmogorov–

Smirnov statistic:

D̃KS
n = max

j
d̃j

n,(5.6)

where the only difference to the Kolmogorov–Smirnov statistic (5.4) is that the supre-

mum in (5.5) is replaced by the supremum calculated over the points of the transformed

sample {Uj
1, . . . ,U

j
n}, i.e.,

d̃j
n = sup

u∈{Uj
1
,...,Uj

n}
|Gj

n(u) − u1 · · ·ud| for j = 1, . . . , d!.(5.7)
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Justel et al. (1997) show in a simulation study that the difference between the power

of the exact and the approximate Kolmogorov–Smirnov test is negligible for n ≥ 50.

For 5% and 10% level of significance and sample size n = 50 and n = 100, Table

1 shows the critical values of the Ta–test with several values of a. Analogous results

for T∞, and the KS statistics are also shown. Table 2 (n = 50), and Table 3 (n = 100)

show the corresponding percentage of rejection (rounded to the nearest integer) for all

tests and the simulated bivariate distributions. It is clear from the power results that

the T∞ test is the least powerful, and even in cases that its rejection rate exceeds that

of the KS test, its use should be avoided in favor of the Ta test. In this connection the

proposed test Ta is seen to be more powerful than the KS test, its superiority holding

uniformly against all alternatives and for each sample size considered.

6 Extension to asymmetric Laplace and application

The asymmetric MLD contains an extra parameter µ ∈ R
d for skewness. The CF of

this distribution is given by

ϕ̃(t) =
eit′δ

1 − it′µ + 1
2
t′Σt

.(6.1)

In view of (6.1) and by following analogous steps and reasoning to that of Section 1 we

only consider the standard case with δ = 0d and Σ = Id, and suggest the test statistic

T̃n,a = n

∫

Rd

∣∣∣∣ϕn(t)

(
1 − it′µ̂n +

1

2
t′t

)
− 1

∣∣∣∣
2

e−a‖t‖2

dt,(6.2)

where ϕn(t) = n−1
∑n

j=1 eit′Zj .

It is easy to see that

T̃n,a = Tn,a + n

∫

Rd

(t′µ̂n)2|ϕn(t)|2e−a‖t‖2

dt − 2n

∫

Rd

(t′µ̂n)Sn(t)e−a‖t‖2

dt.

Thus extra computation for T̃n,a boils down to the calculation of the integrals

Ca := Ca(α, β) =

∫

Rd

(t′α)2 cos(t′β)e−a‖t‖2

dt

and

Sa := Sa(α, β) =

∫

Rd

(t′α) sin(t′β)e−a‖t‖2

dt,
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for arbitrary α, β ∈ R
d. In order to compute Ca and Sa consider the CF of the

multivariate normal distribution with mean γb,b ∈ R
d, γ ∈ IR, and covariance matrix

Id/(2a). From the definition of this CF we deduce the following integrals

Ca,γ :=

∫

Rd

cos(t′x)e−a(x′x−2γx′b)dx =
(π

a

)d/2

cos(γt′b)eaγ2b′b− 1

4a
t′t,

Sa,γ :=

∫

Rd

sin(t′x)e−a(x′
x−2γx

′
b)dx =

(π

a

)d/2

sin(γt′b)eaγ2
b
′
b− 1

4a
t
′
t.

Differentiating twice Ca,γ w.r.t. γ and setting γ = 0 yields, after some relabeling of

variables,

Ca =
(π

a

)d/2 2a‖α‖2 − (β′α)2

(2a)2
e−

1

4a
‖β‖2

.

Likewise, differentiating once Sa,γ w.r.t. γ and setting γ = 0 yields

Sa =
(π

a

)d/2 (β′α)

2a
e−

1

4a
‖β‖2

.

Consequently the test statistic in eqn. (6.2) may be written as

T̃n,a = Tn,a +
1

n

n∑

j,k=1

Ca(µ̂n,Zjk) − 2
n∑

j=1

Sa(µ̂n,Zj)

We now apply the test statistic for the multivariate asymmetric Laplace distribu-

tion to real data on daily currency exchange rates. For the period from January 1,

2008 to December 31, 2008, we use a bivariate data set on two pairs of exchange rates,

namely the Euro vs. the U.S. Dollar and the Japanese Yen vs. the U.S. Dollar. This

data–set contains 253 observations which can be obtained from the official site of the

Bank of England at www.bankofengland.co.uk. The variable of interest is the daily

return, computed as log
(

Pt

Pt−1

)
, for consecutive days t− 1 and t, where Pt denotes the

exchange rate at time t.

The classsical method of moments was employed for estimation of parameters. For

the asymmetric MLD, this method was specified and further studied by Visk (2009).

In particular, for the exchange rate data the estimates of the parameters are (left entry

(resp. right entry) for Euro–U.S.D (resp. Yen–U.S.D.)),

δ̂n = (−0.000358, 0.001274),

µ̂n = (0.000586,−0.002033),

Σ̂n =


 0.0000792 0.0000017

0.0000017 0.0000865


 .
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However, and unlike the case of testing for symmetric Laplace distribution, now the

null distribution of the test statistic depends on the parameter values. In particular this

distribution involves the extra parameter µ, which however in the context of composite

goodness–of–fit testing is considered unknown. Therefore we employ the following

parametric bootstrap procedure in order to actually perform the test: (i) Conditionally

on the observations compute the moment estimates and the corresponding value of the

test statistic, (ii) simulate a sample from a standard asymmetric MLD by taking into

account the skewness parameter obtained as estimate in the previous step, (iii) obtain

the moment estimates of the asymmetric MLD from the sample values observed in the

previous step, (iv) compute the value of the test statistic with the observations of the

second step and the estimates obtained in step (iii). Then, the bootstrap distribution

of the test statistic is produced by repeating steps (ii)–(iv) a number of times, and

from the quantiles of this bootstrap distribution we decide whether the value of the

test statistic obtained in step (i) is significant or not.

In the Table 4 we give the value of the test statistic for the exchange rate data.

Steps (ii)–(iv) of the aforementioned bootstrap procedure were repeated 100 times, and

the critical values so obtained are also shown for 5% and 10% level of significance, and

for several values of the weight parameter a. By comparison it appears that we can

not reject the null hypothesis of an asymmetric multivariate Laplace distribution for

these data.
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Csörgő, S. (1981). Multivariate empirical characteristic functions. Z. Wahrsch. Verw.

Gebiete , 55, 203–229.

Eltoft, T., Kim, T., and Lee, T.W. (2006). On the multivariate Laplace distribution. IEEE

Sign. Processing Lett. , 13, 300–303.

Henze, N. (1997). Extreme smoothing and testing for multivariate normality. Statist.

Probab. Lett., 35, 203–213.

13



Justel, A., Pena, D. and Zamar, R. (1997). A multivariate Kolmogorov-Smimov test of

goodness of fit. Statist. Probab. Lett., 35, 251–259.

Kankainen, A., Taskinen, S. and Oja, H. (2007). Tests of multinormality based on location

vectors and scatter matrices. Statistical Methods and Applications, 16, 357–379.
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Kozubowski, T.J. and Podgórski, K. (2000). Asymmetric Laplace distributions. Math. Sci.

, 25, 37–46.
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Table 1: Critical values for the tests based on 10000 Monte Carlo samples of size n = 50

and n = 100 at 5% and 10% level of significance.

n = 50 Ta KS T∞

a = 0.1 0.15 0.25 0.4 0.5 0.6 0.75 1.0 Left Right

5% 3192.42 1136.53 314.20 94.71 53.00 32.36 17.51 7.61 0.177 2.66 138.74

10% 2875.01 1003.21 271.81 81.19 45.13 27.62 14.87 6.51 0.162 3.86 107.14

n = 100 Ta KS T∞

a = 0.1 0.15 0.25 0.4 0.5 0.6 0.75 1.0 Left Right

5% 3260.53 1152.91 313.01 93.60 51.90 31.94 17.53 7.85 0.137 3.36 204.21

10% 2920.26 1007.22 269.96 80.21 44.63 27.49 14.87 6.64 0.125 4.97 151.32
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Table 2: Percentage of rejection for the tests based on 10000 Monte Carlo samples of size

n = 50 at 5% (upper entry) and 10% (lower entry) level of significance.

Ta KS T∞

a = 0.1 0.15 0.25 0.4 0.5 0.6 0.75 1.0

N 29 46 62 68 68 68 64 58 17 22

47 64 76 81 81 81 80 74 32 35

LN(0.25) 28 45 60 66 67 66 62 56 16 21

47 63 76 80 81 80 78 73 30 34

LN(0.50) 22 32 41 43 42 40 36 30 10 12

37 49 58 59 58 56 53 46 21 20

LN(0.75) 7 8 8 8 7 7 6 5 4 5

14 16 16 15 14 14 13 12 10 10

SN(0.25) 29 46 62 68 68 67 64 57 17 21

47 64 76 81 82 81 79 74 31 35

SN(0.50) 28 45 62 68 68 67 64 57 16 22

47 64 77 81 82 80 79 74 31 35

SN(0.75) 28 45 61 67 67 66 63 57 14 18

47 63 76 81 81 81 79 74 28 30

SN(1.00) 73 91 98 99 99 99 99 98 69 0

87 96 99 100 100 100 100 100 87 2

t(1) 96 97 97 97 97 97 97 97 93 91

97 97 98 98 98 98 98 98 95 93

t(2) 30 34 37 40 41 43 45 48 34 51

37 41 45 48 50 51 53 56 43 58

t(5) 13 16 19 18 16 15 13 11 7 10

24 29 31 29 27 26 24 21 15 16

t(10) 21 30 37 38 37 35 31 26 10 11

35 46 54 54 53 51 47 41 21 19
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Table 3: Percentage of rejection for the tests based on 10000 Monte Carlo samples of size

n = 100 at 5% (upper entry) and 10% (lower entry) level of significance.

Ta KS T∞

a = 0.1 0.15 0.25 0.4 0.5 0.6 0.75 1.0

N 74 89 96 98 98 98 98 96 52 27

87 96 99 99 99 99 99 99 73 43

LN(0.25) 74 89 96 98 98 98 97 96 50 26

87 96 99 99 99 99 99 98 70 41

LN(0.50) 60 75 83 84 82 80 76 67 31 13

76 86 91 91 90 88 86 80 49 22

LN(0.75) 13 14 14 12 11 10 9 7 6 5

23 25 24 21 19 18 17 15 12 9

SN(0.25) 74 90 96 98 98 98 98 96 51 27

87 96 99 99 99 99 99 99 72 43

SN(0.50) 74 90 97 98 98 98 98 96 49 27

87 96 99 99 99 99 99 99 70 43

SN(0.75) 74 88 96 98 98 98 97 96 40 19

86 95 99 99 99 99 99 99 63 32

SN(1.00) 99 100 100 100 100 100 100 100 100 1

100 100 100 100 100 100 100 100 100 4

t(1) 100 100 100 100 100 100 100 100 100 97

100 100 100 100 100 100 100 100 100 98

t(2) 48 54 62 67 69 71 72 75 54 69

55 62 69 73 75 76 78 80 62 75

t(5) 31 37 39 34 31 29 24 19 12 11

47 53 53 48 44 41 37 31 23 18

t(10) 55 68 77 77 75 73 67 58 26 11

71 82 87 87 85 83 79 73 44 20
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Table 4: Value of the test statistic Ta and the 5% and 10% bootstrap critical values for the

currency exchange rate data.

a = 0.1 0.15 0.25 0.4 0.5 0.6 0.75 1.0

Ta 4423.01 1695.41 469.67 134.82 74.21 45.98 26.13 13.19

5% 8057.90 3022.51 1083.31 381.43 216.75 130.57 70.69 33.17

10% 5792.19 2094.31 605.20 194.25 115.58 72.14 38.61 17.86
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